
Alice Guionnet : extrait d’une conférence au Collège de France, dans le cadre du Col-
loque de Nalini Anantharaman “Géométrie et spectres des grands objets”, au sujet des
probabilités non-commutatives de Voiculescu

Alice Guionnet : Okay, so non-commutative entropy, so I mean I go back to the talks yesterday
about Voiculescu’s entropy. So what is Voiculescu’s entropy ? So the idea that you take m Gaussian
matrices, and the matrices entries are Gaussian, let’s say the entries are complex so they form GUE
matrices, and then you ask “what is the probability that the non-commutative law doesn’t go to
this free product but it goes to some other possible non-commutative law, for its large deviation ?”,
so “what is the probability that you see something unexpected there ?”.

Alice Guionnet : Okay, and so if you want to define this more precisely, so what you would like
is that when you take any kind of monomials in your matrices, it will be close to the limit. Okay,
so you take all monomial except degree less than k, so it should be a distance ϵ. So the problem
as allways is that the topology of monomials is not good if you have unbounded variables, so you
bound your variables.

So you have a nice topology now and you take the probability of this, you take the log, so you have
to divide by one over n squared and you take the limit as n goes to infinity and so once this is
done, you will take the limit when ϵ → 0 and you take the limit when k, the degree, and r are going
to infinity. Okay, so that’s the notion of entropy, and this is similar to Shannon’s entropy which is
counting, you know, for instance if you are given a series of zero and one, the probability that you

see
(
n
p

)
ones in this series is going to be given by the relative entropy. It’s kind of the definition

of entropy from a microstate point of view.

So the problem with this entropy is that it’s not yet clear whether you can replace the sup limit by
an inf limit and this is an important issue, so there is only an upper bound and the lower bound
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is very complicated in particular because we don’t even really understand when this set is going to
be empty, which amounts to this count question “when are you sure that given a µ, you will have
a sequence of matrices such that this compares itself to µ.

Nalini Anantharaman : You can say it’s explicit.

Alice Guionnet : Yes, I mean it’s kind of explicit, it’s given in terms of Fisher, I mean it’s
explicit but not easy to compute I would say. Okay, but anyway, so this entropy was still useful, for
its application to von Neumann algebras. And what we also know about this entropy is the case
where you have only one matrix, and then you have an explicit expression, so you can replace your
full application principle, you can replace a lim sup by a lim inf and you have an explicit formula
for the entropy.

And in this case, it’s very easy to derive because somehow you know, now the question is the
probability that, because something that I didn’t maybe point out is that when you have only one
matrix, the non-commutative law is just the empirical measure of the eigenvalues. So if you look
at the probability that this is close to a given profile, so in the case of GUE, you have an explicit
distribution, which is given by this one by one determinant. Okay, and so that’s a normalization
constant, so you have what is called this explicit formula for the eigenvalues, so of course it’s very
nice, and what you can realize is that approximately this is like the exponential of minus n squared
times this entropy as defined here, at LN .
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So this is only approximately, okay, but the density, if you put this in the log, and you forget
that you don’t have the diagonal terms, somehow this is approximately this guy. And so if χ was
continuous, well, you could just say “I can replace the empirical measure by the µ”, and under
the product measure, this is a probability of order exponential minus n, so I would get that this
probability is a product exponential minus n squared times χ(µ). Okay, so that’s a pretty easy
result, and so this is the entropy which I asked yesterday could be related with the entropy that
came in the talk of Professor Suzuki.

Yes, okay, so that’s what we have, and now what did we do ? We wanted to do the same thing for
heavy-tailed matrices, and so this is kind of what we succeeded to do, but so we have to condition
our matrices to be kind of bounded, as before, because otherwise the topology of the traffic is not
good, and now the speed is not 1 over n squared, but 1 over n, because you have this heavy-tailed
kind of effect, and what we could get in this case is a full large deviation principle, so if we look at
the probability that the traffics are close to a limited traffic, then we can replace a sup limit sup by
an inf limit, and we have a kind of explicit formula for that, but which is too nasty that I decided
not to show it to you.

Alice Guionnet : D’accord, donc l’entropie non commutative. . . Je reviens aux discussions d’hier
sur l’entropie de Voiculescu. Qu’est-ce que l’entropie de Voiculescu ? L’idée est de prendre m ma-
trices gaussiennes, dont les coefficients sont complexes (on pourrait dire des matrices GUE), et de
se demander : “Quelle est la probabilité que la loi non commutative ne corresponde pas à ce pro-
duit libre, mais à une autre loi non commutative possible, compte tenu de sa grande déviation ?”.
Autrement dit, “quelle est la probabilité d’observer un résultat inattendu ?”.

D’accord, et donc si vous voulez définir cela plus précisément, ce que vous souhaitez, c’est que
lorsque vous prenez des monômes quelconques dans vos matrices, ils soient proches de la limite.
D’accord, donc vous prenez tous les monômes sauf ceux de degré inférieur à k, donc la distance
devrait être ϵ. Le problème, comme toujours, est que la topologie des monômes n’est pas bonne si
vous avez des variables non bornées, donc vous bornez vos variables.

Vous avez donc maintenant une topologie intéressante. Pour calculer la probabilité de cette topolo-
gie, vous prenez le logarithme, c’est-à-dire que vous divisez par N2. Vous calculez ensuite la limite
lorsque N tend vers l’infini. Une fois cela fait, vous calculez la limite lorsque ϵ tend vers 0, puis
la limite lorsque k (le degré) et r tendent vers l’infini. Voilà la notion d’entropie. C’est similaire à
l’entropie de Shannon, qui consiste à compter. Par exemple, si vous êtes donné une série de 0 et

de 1, la probabilité d’observer
(
n
p

)
uns dans cette série est donnée par l’entropie relative. C’est en

quelque sorte la définition de l’entropie du point de vue des micro-états.

Le problème avec cette entropie est qu’il n’est pas toujours clair que l’on puisse remplacer la limite
supérieure par une limite inférieure, et c’est un point important. Il n’existe donc qu’une borne su-
périeure, et la borne inférieure est très complexe, notamment parce que nous ne comprenons même
pas vraiment quand cet ensemble sera vide. Cela revient à se demander : “Quand est-on sûr que,
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étant donné un µ, on aura une suite de matrices telle que celle-ci qui est comparable à µ ?”.

Nalini Anantharaman : On peut dire que c’est explicite.

Alice Guionnet : Oui, enfin, c’est plutôt explicite, c’est donné en termes de Fisher, c’est explicite
mais pas facile à calculer, je dirais. Bref, cette entropie était quand même utile pour son application
aux algèbres de von Neumann. Et ce que l’on sait aussi de cette entropie, c’est que dans le cas où
l’on n’a qu’une seule matrice, on a une expression explicite. On peut donc remplacer le principe
d’application complet, on peut remplacer lim sup par lim inf et on a une formule explicite pour
l’entropie.

Et dans ce cas, c’est très facile à déduire car, d’une manière ou d’une autre, la question est main-
tenant de connaître la probabilité que.., parce que quelque chose que je n’ai peut-être pas souligné,
c’est que lorsqu’on n’a qu’une seule matrice, la loi de non-commutativité est simplement la mesure
empirique des valeurs propres. Donc, si l’on considère la probabilité que ce soit proche d’un profil
donné, dans le cas de GUE, on a une distribution explicite, qui est donnée par ce déterminant un
sur un. D’accord, et c’est une constante de normalisation, donc on a ce qu’on appelle cette formule
explicite pour les valeurs propres, ce qui est évidemment très pratique, et on peut se rendre compte
que c’est approximativement comme l’exponentielle de moins N au carré multipliée par cette en-
tropie telle que définie ici, en LN .

Donc, ce n’est qu’une approximation, d’accord ? Mais la densité, si on la met dans le logarithme
et qu’on oublie qu’il n’y a pas les termes diagonaux, on obtient une approximation de cette ex-
pression. Et donc, si χ était continue, on pourrait simplement dire : “Je peux remplacer la mesure
empirique par µ”, et sous la mesure produit, il s’agit d’une probabilité d’ordre exponentiel moins
N , donc j’obtiendrais que cette probabilité est égale à χ(µ) (fois l’exponentielle de moins N au
carré). D’accord, c’est un résultat assez simple, et donc cette entropie dont j’ai parlé pourrait être
liée à l’entropie évoquée dans l’exposé du professeur Suzukihier.

Bien, voilà ce que nous avons. Et maintenant, qu’avons-nous fait ? Nous voulions faire la même
chose pour les matrices à queue lourde, et c’est plus ou moins ce que nous avons réussi à faire.
Mais nous devons conditionner nos matrices pour qu’elles soient bornées, comme précédemment,

car sinon la topologie du trafic n’est pas optimale. Maintenant, la vitesse n’est plus de
1

N2
, mais

de
1

N
, à cause de cet effet de queue lourde. Dans ce cas, nous avons pu appliquer pleinement le

principe des grandes déviations. Si nous considérons la probabilité que les trafics soient proches
d’un trafic limité, nous pouvons remplacer une limite supérieure par une limite infinie. Nous avons
une formule explicite pour cela, mais elle est tellement complexe que j’ai décidé de ne pas vous la
montrer.
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