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Jean-Pierre Bourguignon

J’aimerais vous parler des espaces courbes. Dans l’histoire des mathématiques, le problème de l’es-
pace s’est posé presque à la naissance de la discipline. Et, en fait, il s’est posé de manière concrète.

Comment peut-on, à partir d’un certain nombre de mesures, déduire des choses utiles, par exemple
la surface d’un champ rectangulaire ? Comment peut-on répondre à des questions plus idéales,
lorsque nous l’examinons de près, comment peut-on décrire la position de ce qu’on y voit, des
étoiles, mais aussi, finalement, et ça, c’est une grande évolution dans l’histoire des mathématiques,
avec des espaces beaucoup plus abstraits.

Et en fait, cette évolution s’est faite d’une conception très rigide, simplement parce qu’il y avait
une certaine géométrie qui s’imposait, qui était la géométrie d’Euclide, à la situation actuelle d’une
richesse absolument foisonnante. En fait, on est passé de la confrontation à un modèle obligatoire,
et à l’interdiction de regarder d’autres modèles, en fait, à cause de la présence de modèles différents,
à une multitude d’utilisations possibles des espaces courbes.

Donc commençons à la naissance de la géométrie. On trouve des ébauches de géométries, aussi
bien chez les Égyptiens que chez les Chinois, que chez les Grecs ; et en fait, probablement qu’il est
important de ne pas oublier les Chinois. Le théorème qu’on appelle le théorème de Pythagore, qui
relie la longueur de l’hypoténuse d’un triangle rectangle aux longueurs de ses côtés (le carré de
l’hypoténuse est égal à la somme des carrés des côtés), en fait était connu des Chinois, probable-
ment bien avant, et on pense même à une datation d’environ neuf siècles avant Jésus-Christ. Mais
le document qui a vraiment joué un rôle, tant dans l’histoire générale des mathématiques que dans
l’histoire de la géométrie, un rôle décisif, est celui des Éléments d’Euclide. Ce document, qui balaye
beaucoup de choses en mathématiques, il y a en particulier un livre entier sur la géométrie, intro-
duit une approche qu’on appelle aujourd’hui axiomatique, c’est-à-dire qu’il vise à définir chacun
des éléments constitutifs de la géométrie.

Ce sont les points, ce sont les droites, ce sont les plans, et ensuite à définir les positions relatives de
ces différents éléments. Autrement dit, un point sur une droite, une droite dans un plan, des droites
qui se coupent, mais aussi on est confronté à la possibilité que deux droites prises dans un plan ne
puissent ne pas se couper, c’est ce qu’on appelle des droites parallèles. En fait, par rapport à ces
droites parallèles, Euclide énonce un axiome, un postulat, c’est plutôt la terminologie employée,
qui paraît tout à fait naturel, mais est devenu problématique par la suite.

Donc, ce fameux postulat d’Euclide est un postulat que tout le monde connaît, à savoir que si je
prends dans un plan une droite et un point, eh bien, par ce point, il passe une et une seule droite
parallèle à la droite que je me suis donné au départ. Évidemment, pour que la question ait un
sens, est-il important que je prenne le point en dehors de la droite. Voilà donc ça, c’était ce fameux
postulat. Et très vite, en fait, un certain nombre de gens se sont mis à questionner la nécessité
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d’avoir ce postulat. Autrement dit, à poser la question “n’est-il pas possible de déduire ce postu-
lat, qui est à un certain niveau dans la liste des postulats posés par Euclide, n’est-il pas possible
de le déduire des postulats précédents ?”. La question qui se posait, donc, est celle de l’indépen-
dance du postulat des parallèles par rapport aux postulats antérieurs. Donc on va garder en tête ce
postulat pendant quelques minutes là, pour justement voir en quoi il dit des choses sur la géométrie.

La chose importante, c’est de voir qu’on peut lui donner des formulations équivalentes. Et la for-
mulation équivalente la plus intéressante peut-être, la plus banale est de dire que quand je prends
un triangle, quelconque, donc dans un plan, je prends trois points qui déterminent ce plan et je
les joins par des segments. Eh bien, ces segments forment des angles, qu’on appelle les angles du
triangle (tri-angle comme on dit), et la somme des angles de ce triangle est exactement un angle
plat, ou, si vous préférez, deux angles droits. Et affirmer que la somme des angles d’un triangle est
exactement égale à un angle plat, c’est équivalent à l’axiome, au postulat des parallèles.

Et donc beaucoup de gens, dans toute l’histoire des mathématiques, se sont donc échinés, ont fait
des efforts de mathématiciens, pour décider si oui ou non, on avait besoin de ce postulat ou si on
pouvait déduire ce postulat. Beaucoup de preuves erronées ont été proposées, certaines extrême-
ment subtiles, et en fait, on a... c’est une chose intéressante, que de décider... cette obsession de
trancher définitivement cette question, a priori, sans conséquences pratiques, de savoir si le postu-
lat des parallèles est un postulat nécessaire à la géométrie ou si on peut le déduire des postulats
précédents, est devenue une question qui a réellement préoccupé un nombre important de mathé-
maticiens. Ce n’était pas une bizarrerie, c’était devenu une sorte de défi.

Et pourquoi est-ce que c’était un défi ? Eh bien essentiellement parce que, derrière cela, il y avait
un peu la question de l’unicité de la géométrie d’Euclide. Autrement dit, peut-on imaginer d’autres
géométries, que la géométrie d’Euclide ?

Alors avant de plonger dans la période extraordinaire dans laquelle tout ce sujet s’est enrichi,
agrandi, ce qui va me permettre de parler de la courbure, je voudrais revenir sur un certain nombre
de concepts tout à fait simples, relatifs aux courbes, qui en fait se sont développés au cours des
siècles, mais sont devenus vraiment l’objet d’une géométrie particulière à partir du xviiie siècle,
et au xixe siècle bien entendu. La chose dont je veux parler, c’est une courbe qu’on peut imaginer
comme une courbe plane, mais ça peut être une courbe gauche ; ça n’est pas fondamental pour ce
que je veux dire.

Ça veut dire une sorte de dessin, très régulier, à une dimension. Évidemment, une des premières
notions qui est importante, qui est liée à cette idée de régularité, c’est qu’en fait, si je prends un
point de cette courbe, que je peux imaginer comme une trajectoire, d’ailleurs, et si je prends un
point de cette courbe, eh bien en ce point-là, à cause du fait qu’elle est régulière, je peux lui trouver
une droite tangente. Autrement dit, on essaye toujours de se ramener à des courbes simples, qu’on
connaît ; les droites sont parmi les courbes les plus simples. Et donc, on trouve en chaque point
une tangente. On peut imaginer quand on fait bouger le point le long de la courbe, évidemment la
tangente change. Et ça, c’est une chose intéressante, d’étudier les changements de cette tangente.
Mais en fait, on a aussi une autre famille de courbes avec lesquelles on a envie de comparer notre
courbe, qui sont des courbes très simples étudiées dès Euclide, bien entendu, qui sont les cercles.
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Dans un plan, le cercle est exactement la courbe obtenue quand, en prenant un point, le centre, et
en portant dans toutes les directions la même distance, eh bien, je trouve une figure parfaitement
symétrique, puisque j’ai porté la même distance, qui est donc un cercle. Ainsi, si je me donne une
courbe quelconque, je peux m’intéresser à trouver des cercles qui vont être tangents à la courbe en
un point particulier. Alors évidemment, c’est facile de voir, à cause de la façon dont les cercles sont
tracés, que si je m’intéresse à un cercle tangent à la courbe en un certain point, eh bien son centre
est forcément sur la perpendiculaire à la tangente en ce point, puisque comme vous le savez, toutes
les tangentes au cercle sont perpendiculaires au cercle au point d’attachement. Et donc maintenant,
quand on s’intéresse... je prends un point sur la courbe, je prends la perpendiculaire à la tangente et
je fais varier maintenant le centre du cercle sur cette perpendiculaire. Évidemment, quand je prends
des tout petits cercles, ils vont être d’un seul de la courbe, quand je prends de très grands cercles,
ils vont être de l’autre côté de la courbe. Et il y a ce phénomène mathématique très intéressant
qu’entre ces deux familles de cercles, les petits et les grands, il n’existe qu’un seul cercle particulier
où, en général, le cercle se situe d’un côté du point situé au-delà de la courbe, et de l’autre côté du
point situé en-deçà de la courbe ; ce cercle est appelé cercle de courbure. Donc vous voyez qu’il y a
un rayon particulier d’un cercle, qui a une propriété très particulière par rapport à la courbe.

Et évidemment, en ce point de la courbe, on a envie d’attacher le nombre qui est le rayon de ce
cercle, qui est le rayon de courbure. Et en fait, pour les mathématiciens, ça sera encore plus simple
si, au lieu de prendre le rayon de courbure, je prends en fait ce qu’on appelle la courbure, c’est-à-
dire l’inverse du rayon de courbure. Et donc voilà, maintenant que je sais attacher en chaque point
d’courbe, un nombre à cette courbe, qui représente son rayon de courbure, ou sa courbure, comme
on veut.

Bien sûr, il y a des situations particulières, des courbes particulières, comme la droite, et on peut se
dire : “mais qu’est-ce qui se passe dans ce cas-là ?”. Évidemment, si je prends un point de la droite,
la droite est elle-même sa propre tangente. Sur la perpendiculaire à cette droite en ce point, si je
prends des cercles, ils sont toujours du même côté. Et évidemment, plus je m’écarte, plus les cercles
s’écrasent sur la droite, et on peut imaginer un cercle dont le rayon serait infini ; je me suis donc
éloigné à l’infini sur la perpendiculaire, eh bien, le cercle dégénère en une droite. Et comme on a
parlé tout à l’heure de la courbure comme de l’inverse du rayon de courbure, le rayon de courbure
doit donc être infini, ce qui signifie que la courbure d’une droite est nulle.

J’en arrive maintenant donc, à un moment assez crucial, qui en fait s’est étalé sur beaucoup d’an-
nées. En effet, parce que l’auteur de ce texte extraordinaire, qui s’appelle Disquisitiones Generales
Quercas Superficies Curvas (Discussions Générales sur les Courbes Tracées sur les Surfaces), l’au-
teur est Carl Friedrich Gauss, publié en 1828, bien que la conférence ait eu lieu en 1827, mais qu’il
a mûri pendant 25 ans, parce que Gauss était un homme patient, qui publiait peu, mais des choses
mûres “Pauca sed matura”, telle était sa devise. Dans ce texte exceptionnel, Gauss introduit, pour
les surfaces cette fois, donc des objets à deux dimensions, un notion extraordinaire, qui est la notion
de courbure d’une surface, courbure intrinsèque.

Alors cela m’oblige à revenir sur ce que je disais sur les courbes, parce que maintenant que j’ai une
surface, j’imagine qu’elle est régulière, aussi régulière que les courbes que je considérais auparavant.
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Cela signifie que lorsque je me place en un point de cette surface, elle admet un plan tangent.
Étant donné que je suis en deux dimensions, l’objet tangent sera un plan, potentiellement tangent,
puisque je m’intéressais aux courbes. Ainsi, si je considère cette surface évoluant dans l’espace qui
nous entoure, en trois dimensions, ce plan, au point de contact avec la surface, possède une normale,
donc une perpendiculaire, à ce plan.

Je peux maintenant m’intéresser aux plans, au pluriel, qui passent par cette normale et qui vont pi-
voter autour d’elle. Évidemment, puisque j’ai choisi ces plans contenant la normale, perpendiculaire
à la surface en ce point, ils coupent la surface suivant une courbe. Et comme je l’ai dit auparavant,
chaque fois que j’ai une courbe, je peux rattacher en chacun de ces points sa courbure en ce point.

Et maintenant, lorsque je trace mon plan autour de cette normale, la courbure de la surface change
évidemment. En fait, elle varie entre deux valeurs : une valeur maximale et une valeur minimale.
Or, la chose remarquable que Gauss démontre dans son article Discussions générales concernant les
courbes tracées sur les surfaces, c’est ce qu’il appelle le theorema agregium, le théorème suprême
de son article. Il y démontre que si je m’intéresse cette fois au produit du minimum de courbure
de toutes les courbes obtenues en coupant la surface par un plan perpendiculaire, si je multiplie la
courbure minimum par la courbure maximum, j’obtiens une quantité aux vertus extraordinaires,
car cette quantité est accessible aux êtres qui ne pourraient vivre que sur la surface.

Je n’ai donc plus besoin de cette troisième dimension qui me permettait de tracer mes courbes
d’intersection, mes courbures maximum et minimum. En réalité, la surface possède une géométrie
intrinsèque. J’accède à l’un des invariants de cette géométrie précisément en calculant la courbure
par multiplication du minimum et du maximum. C’est une découverte extraordinaire, car pour la
première fois, nous voyons apparaître l’idée qu’un espace, représenté par cette surface dans l’espace
tridimensionnel, peut posséder une géométrie intrinsèque, et que l’un des invariants importants
qui peut découler de cette géométrie intrinsèque, c’est qu’en chaque point de cette géométrie est
rattachée sa courbure.

L’une des choses extraordinaires qui a probablement retardé la publication de l’article de Gauss et
la tenue de cette conférence, c’est qu’il souhaitait disposer d’une formule absolument claire pour
décrire cet invariant, afin qu’on puisse calculer cet invariant très simplement, aussi simplement que
possible. Et en fait, l’idée même qu’on puisse s’affranchir de la manière dont on a plongé la surface
dans l’espace tridimensionnel constitue en soi une découverte extraordinaire. C’était la naissance,
en géométrie, d’une nouvelle catégorie : la notion de courbure. Cette notion n’était présente aupa-
ravant que dans le cas des courbes, mais dans le cas des courbes, la notion de courbure est très
directement liée à la manière dont les courbes vivent (se situent) dans l’espace à deux, trois ou
quatre dimensions, et elle n’est donc pas intrinsèquement liée à la courbe elle-même. Elle y est liée
par sa manière d’exister dans un espace plus vaste. Ici, pour les surfaces, la découverte fondamen-
tale réside dans une certaine façon d’avoir identifié la possibilité d’associer un nouvel invariant à
une géométrie intrinsèque.

Il est donc évident que la surface la plus courante est le plan. Lorsqu’on projette un plan dans
l’espace tridimensionnel, on effectue la construction mentionnée précédemment avec les surfaces :
on prend la normale, on fait pivoter les plans autour de cette normale, et tous ces plans coupent le
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plan qui nous intéresse suivant des droites. Or, nous avons vu précédemment que la droite corres-
pond à une courbure nulle.

Dans ce cas, la fameuse courbure maximale de toutes les courbes que l’on trouve par découpe, et
la courbure minimale restent nulles. En fait, elles ne changent pas. Et donc, le produit de zéro par
zéro est nul. Le plan a donc une courbure nulle.

Alors, vous me direz, quel rapport peut-il y avoir entre la notion de géométrie et cette découverte
ou cette invention de Gauss concernant la courbure d’une surface ? Eh bien, en fait, pratiquement
au même moment, et dans le cas de Gauss, il y avait incontestablement déjà sérieusement réfléchi,
apparaît, en gros, et en tout cas de manière révolutionnaire, le défi lancé, indépendamment par au
moins deux mathématiciens, de définir des géométries non euclidiennes. Autrement dit, des géo-
métries qui vérifient tous les axiomes usuels de la géométrie, mais qui violent l’axiome des parallèles.

D’une certaine manière, la conséquence de la définition ou de l’introduction de ces géométries non
euclidiennes sera, bien sûr, de nous faire prendre conscience de l’importance de l’axiome des paral-
lèles, puisque nous pouvons concevoir d’autres géométries qui ne le font pas. Vérifiez cet axiome et,
d’une certaine manière, ces géométries ont autant le droit que les autres d’être appelées géométries.
Qui sont donc ces mathématiciens exceptionnels ? Nikolaï Lobachevsky, mathématicien ayant vécu
à Kazan, publia un ouvrage en 1830. Et un autre mathématicien hongrois, János Bolyai, que je
qualifierais d’ailleurs de mathématicien de façon quelque peu inexacte. János Bolyai était en réa-
lité un officier qui s’ennuyait dans ses garnisons. Son père, Wolfgang Bolyai, était un ami intime
de Gauss, et János Bolyai demandait à son père de lui fournir des éléments de réflexion. Parmi
ces éléments de réflexion fournis par son père, figurait la définition possible de géométries non
euclidiennes. Finalement, János Bolyai publia ces résultats en appendice de l’article de son père,
prouvant ainsi qu’il ne se considérait pas lui-même comme un véritable géomètre.

De quoi s’agit-il ? Eh bien, il s’agit, en effet, de nouveaux modèles de géométrie, pour lesquels on a
eu quelques difficultés à les représenter et à faire accepter ces nouvelles géométries. Et Lobachevsky
est extraordinairement prudent lorsqu’il la définit. Il prend grand soin de dire que cette géométrie
ne se retrouve pas réellement dans le monde sensible qui nous entoure nous.

Et, de fait, il existe un échange épistolaire entre Gauss et Wolfgang Bolyai. Wolfgang Bolyai, le
père de J
De plus, un rapport concernant Nikola Lobachevski, établi par un inspecteur de l’Université de
Kazan, indique que l’argent des contribuables est bel et bien gaspillé en rémunérant des professeurs
qui vont jusqu’à contester les axiomes de la géométrie euclidienne. Il a donc fallu un certain temps
pour que cette idée soit bien acceptée. Et, en fait, l’important est que ces géométries non eucli-
diennes, dont la géométrie euclidienne fait partie, d’une certaine manière, puissent se représenter
d’une façon très simple.

Nous avons donc bien sûr la géométrie usuelle, la géométrie euclidienne, celle à courbure nulle, et
c’est là que nous allons faire le lien avec la courbure.

Il y a également de la géométrie de Lobachevsky ou de Bolyai, que l’on appelle aujourd’hui géomé-
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trie hyperbolique, car on peut en effet la représenter comme la géométrie induite sur une surface
qui est un hyperboloïde dans l’espace tridimensionnel.

Il y a la géométrie à courbure négative, et puis il y a la géométrie sphérique que nous connaissons
bien, que les astronomes utilisaient depuis longtemps, et dont personne n’avait imaginé qu’elle était
une concurrente de la géométrie euclidienne.

Alors, qu’est-ce qui rend la géométrie sphérique plus facile à décrire ? Eh bien, c’est très simple :
prenons une sphère, de rayon 1 pour simplifier au maximum les calculs. Il est bien connu que les
chemins les plus courts sur une sphère sont les grands cercles. Autrement dit, en géométrie sphé-
rique, ce que nous appellerons droites correspond aux grands cercles.

Donc, bien sûr, si je prends un grand cercle, donc un cercle droit dans cette géométrie, si je prends
un point extérieur à ce grand cercle, je ne trouverai jamais de parallèle puisqu’un parallèle Il devrait
y avoir un grand cercle passant par le point extérieur et aboutissant à un autre grand cercle, et tous
ces grands cercles se croisent. Il y a donc violation du postulat des parallèles. Ainsi, cette géométrie
est en fait caractérisée par le fait que si l’on calcule la courbure au sens de Gauss de cette géomé-
trie, nous constatons que sa courbure est exactement égal à +1, tandis que la géométrie euclidienne
est une géométrie à courbure nulle. Et la géométrie hyperbolique, dans le modèle normalisé, si on
normalise l’hyperboloïde comme on a normalisé la sphère de rayon 1, eh bien, sa courbure sera
inférieure à −1. Ainsi, ces géométries non euclidiennes ont le mérite d’être des espaces à courbure
constante, négative, nulle ou positive.

Jusqu’à maintenant, je me suis intéressé aux objets du monde qui nous entourent assez naturelle-
ment, les courbes, les surfaces, l’espace tridimensionnel dans lequel nous vivons. Mais, bien sûr, les
mathématiciens aiment aller plus loin. Et celui qui a franchi cette nouvelle dimension, cette nouvelle
étude des espaces, est Bernard Riemann, l’un des grands mathématiciens du xixe siècle. Et il l’a
fait dans des circonstances tout à fait exceptionnelles, celles de la soutenance de sa thèse en 1854.
Dans la tradition allemande, outre la présentation des travaux du chercheur, Bernard Riemann en
l’occurrence, il était d’usage que le jury propose trois sujets de réflexion au candidat et que le jury
a fait son choix parmi ces trois sujets une semaine seulement avant la soutenance.

Dans le jury de Riemann figurait Carl Friedrich Gauss, et le sujet finalement retenu portait sur les
hypothèses fondatrices de la géométrie. Durant le court laps de temps imparti à Riemann pour pré-
parer sa présentation de ce sujet imposé, il a manifestement fait franchir à la géométrie une étape
décisive. De quoi s’agit-il ? Bernard Riemann s’est préoccupé de ce qu’il est nécessaire de donner
sur un espace en général, puisqu’il se situe dans un espace à n dimensions, autrement dit, où n
paramètres sont nécessaires pour localiser un point, ce qui généralise le fait que sur une courbe, j’ai
besoin d’un paramètre, sur une surface, de deux paramètres, et dans un espace tridimensionnel, de
trois coordonnées pour localiser un point. Il s’intéressait donc à ce dont il avait besoin pour mesurer
la longueur des courbes. Si je trace une courbe dans un tel espace, en chacun de ces points, j’ai
n coordonnées pour localiser ce point, mais si je parcours une courbe, j’aurai un vecteur vitesse,
et je pourrai mesurer la longueur de ce vecteur. Donc, finalement, si je dispose d’un élément de
mesure pour mesurer la longueur de ce vecteur en chaque point, je pourrai déterminer la longueur
de la courbe. Il suffit d’intégrer, comme on dit en mathématiques, toutes les longueurs des vecteurs
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vitesse le long de la courbe. Bien sûr, l’élément décisif est la définition de cette géométrie. On la
définit à l’aide de ce qu’on appelle aujourd’hui un produit scalaire. C’est la méthode privilégiée
par Riemann dans sa construction. De toute évidence, ce produit scalaire n’est pas nécessairement
constant. Autrement dit, d’un point à l’autre de l’espace, d’une dimension donnée, le produit sca-
laire peut varier. En d’autres termes, si je l’exprime avec des coordonnées, eh bien, es coefficients
de ce produit scalaire changeront d’un point à l’autre.

Ce qui est extraordinaire dans ce texte, publié après la mort de Riemann, qui décrit les hypothèses
sur lesquelles repose la géométrie, c’est que les formules sont peu nombreuses, mais il y en a une
où il montre que si l’on choisit bien le système de coordonnées dans cet espace, il est possible de
décrire l’évolution de ce produit scalaire, l’évolution de ces coefficients, en les comparant à la valeur
au point où nous nous trouvons, mais nous nous intéressons au comportement dans le voisinage,
remarque-t-il, il existe une quantité mathématique très précise, un peu compliquée, appelée aujour-
d’hui tenseur de Riemann-Christoffel, qui permet de mesurer la déviation de la géométrie considérée
par rapport à une géométrie à coefficient constant, donc en fait une géométrie euclidienne. Et ce
coefficient est précisément la courbure, et c’est là qu’il établit le lien avec les travaux de Gauss. En
d’autres termes, il trouve dans le cas des surfaces, donc dans des espaces à 2 dimensions, le calcul de
la courbure qui a été introduit par Gauss, mais il est capable de le généraliser à toutes les dimensions.

La complication vient du fait que plus on augmente en dimensions, plus le nombre de paramètres
contenus dans la courbure augmente, et cette augmentation est en réalité assez importante, as-
sez vertigineuse, car par exemple, en 4 dimensions, nous avons 20 composantes pour ce tenseur
de Riemann, mais c’est évidemment un point fondamental que Riemann a pu établir pour conce-
voir la généralisation de ce qu’avait introduit Gauss dans toutes les dimensions. En fait, il a créé
une géométrie générale, appelée géométrie riemannienne. Ici aussi, le lien avec les géométries non
euclidiennes mentionnées précédemment est très simple : les géométries non euclidiennes, hyperbo-
liques, sphériques ou euclidiennes, sont tout simplement, encore une fois, des géométries à courbure
constante. Mais cette fois, il nous faut exprimer correctement la notion de courbure pour pouvoir
parler de courbure constante. Cela se démontre assez simplement, par exemple en considérant des
surfaces à deux dimensions plongées dans un espace à n dimensions et en disant que pour chaque
plan à deux dimensions en ses points, quelle que soit la méthode de mesure de la courbure de
Riemann sur ce plan, on obtient toujours la même valeur. On retrouve ainsi la constance pour tous
les plans plongés dans l’espace à n dimensions.

Vous voyez donc que nous avons maintenant une notion de courbure beaucoup plus riche, beaucoup
plus complexe, et qui a intrigué pendant très longtemps. Le plus concret que l’on puisse dire à ce
sujet, c’est que cela offre, comme Gauss l’entendait, une manière extrêmement simple et intuitive
de trouver la courbure. En effet, dans les espaces riemanniens, je peux m’intéresser, même dans
les espaces à deux dimensions comme Gauss, à la notion de cercle. Je prends donc un point, je me
déplace dans toutes les directions sur une petite distance r, et je trouve une courbe. Évidemment,
si je ne vais pas trop loin, je trouve une courbe très régulière, et je peux m’intéresser à la longueur
de cette courbe.

Et j’ai dit que dès que je suis dans un espace riemannien, je sais mesurer la longueur des courbes. Et
à ce moment-là, nous savons que dans l’espace euclidien, la longueur d’un cercle est 2π multiplié par
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le rayon. Eh bien, dans un espace courbe, la longueur n’est pas nécessairement égale à 2π multiplié

par le rayon, mais elle doit être corrigée par un facteur qui est égal à
1

6
de la valeur de la courbure

au point multipliée par le cube du rayon.

Autrement dit, on voit bien que la courbure est accessible, comme je l’avais mentionné précédem-
ment, aux êtres contraints de vivre sur la surface car, pour eux, il est possible, en partant d’un
point, de mesurer la distance r, puis de mesurer la longueur du cercle de rayon r, et ils verront, ce
faisant, qu’ils auront une idée de l’écart par rapport à la géométrie euclidienne. Et on trouve que
la géométrie euclidienne est particulière, en ce sens que quel que soit le point de départ, et en fait
quel que soit le rayon, la formule de calcul de la longueur du cercle de rayon r sera toujours 2πr.
Dès que je me trouve dans un espace courbe, d’un point à l’autre, la longueur de ce cercle variera.

Si ma courbure est positive, puisque la formule consistait à soustraire
1

6
de la valeur de la courbure

fois le cube du rayon, on constate que sur les espaces à courbure positive, la longueur des cercles est
plus courte, ce que l’on observe sur la sphère. Si l’on considère la situation sur la sphère, en trois
dimensions, si je parle du pôle Nord et que je m’intéresse au cercle à une distance r du pôle Nord,
correspondant aux parallèles, on constate que la longueur de ces parallèles est déterminée par la
formule 2π multiplié par le sinus du rayon, et non par le rayon lui-même. Or, le sinus est inférieur
au rayon à mesure que l’on s’éloigne de la Terre. En réalité, c’est même plus complexe.

Lorsque je parcours les parallèles, j’arrive à l’équateur, qui correspond au plus grand parallèle, et
ensuite le rayon commence à diminuer, puisqu’il est donné par le sinus. Et bien sûr, si je vais au
pôle Sud, le cercle de rayon exactement π (puisque j’ai divisé par 2 pour aller à l’équateur, je me
déplace de π pour aller jusqu’au pôle Sud), le cercle a en fait exactement la valeur 0, car le sinus
de π est nul. Et en fait, nous avons cette particularité de la géométrie sphérique selon laquelle ceux
qui devraient être des grands cercles deviennent des petits cercles.

Voilà donc la situation des espaces à courbure positive. Dans le cas des espaces courbes négatifs,
nous sommes dans la situation inverse, en ce sens que les cercles auront des longueurs supérieures à
la longueur euclidienne, et cela est lié au fait que l’image typique de la surface à courbure négative
est la forme de la selle du cheval. Et nous pouvons le constater si je parle du centre Du point de
vue de la selle, lorsque je vais dans une certaine direction, je descends, dans une autre direction
je monte, et pour compenser ces montées et descentes, mon cercle centré au centre de la selle sera
plus long que le cercle euclidien.

Voici donc cette approche plus intuitive de la courbure, déjà accessible chez Gauss, mais qui, grâce à
Riemann, nous permet désormais de disposer une extraordinaire richesse géométrique qui a permis
d’intégrer des géométries non euclidiennes dans un environnement d’une richesse bien supérieure.

J’aimerais parler un peu d’un personnage qui, dans la lignée de Bernard Riemann bien sûr, mais
dont la contribution à la géométrie est souvent un peu sous-estimée. Il s’agit d’Hermann von Helm-
holtz, peut-être le dernier scientifique universel.

Il a consacré une grande partie de sa vie à la médecine : c’est lui qui a conçu la quasi-totalité
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de l’instrumentation ophtalmologique que nous connaissons aujourd’hui, hormis les instruments
modernes, et en tout cas l’instrumentation classique. II s’est ensuite tourné vers la physique, no-
tamment l’électromagnétisme, mais il a également apporté des contributions aux mathématiques
intéressantes. Peu après la publication de ses mémoires posthumes, comme je l’ai dit, d’autres ar-
ticles de Riemann ont été publiés.

Les mémoires de Riemann s’intitulaient Hypothesen, welche der Geometrie unten liegen (Les hy-
pothèses sur lesquelles est basée la géométrie). Helmholtz a publié un texte intitulé Ueber die
thatsachen, welche der Geometrie unten liegen (Les faits qui sont à la base de la géométrie). Fakten
en allemand signifie faits.

Il souhaitait donc opposer une vision concrète de la géométrie à la vision abstraite et hypothétique
de Riemann. De fait, ce texte présente une étude assez remarquable de ces géométries généralisées
introduites par Riemann, qui possèdent en outre la propriété d’être préservées par un très grand
nombre de transformations. Ce que nous appelons les isométries. Il s’agit donc de transformations
qui, lorsqu’on prend une figure, en restituent une qui est, du point de vue géométrique, identique,
puisqu’elle est isométrique. Le texte le plus célèbre développant ce point de vue est d’ailleurs celui
de Felix Klein, souvent appelé son programme d’Erlangen, car il s’agissait de sa leçon inaugurale
dans la ville allemande d’Erlangen. Et ce programme est effectivement, pour la géométrie, un chan-
gement plutôt radical, et pour les espaces courbes, une sorte de canonisation fantastique.

Que disent ces textes ? Ils disent essentiellement qu’une géométrie est précisément l’ensemble des
propriétés invariantes par un groupe de transformations. Donc, pour comprendre une géométrie, il
faut d’abord comprendre toutes les transformations qui la conservent. Et lorsqu’il y en a suffisam-
ment, eh bien, je parviens à caractériser cette géométrie.

Car, évidemment, si je prends une géométrie générale, au sens de Riemann, avec des irrégularités
partout, je ne trouverai pas de transformation qui la préserve. Bien sûr, quand on s’intéresse à la
géométrie euclidienne, les isométries sont connues depuis longtemps. Il y a évidemment les trans-
lations, qui consistent simplement à déplacer une figure tout entière dans une direction sans la
déformer. Mais il y a aussi les rotations, c’est-à-dire autour d’un point fixe, le simple fait de faire
tourner les objets. Et bien sûr, ces transformations génèrent toutes les isométries de la géométrie
euclidienne. Mais de la même manière, sur la sphère, j’ai parlé de la géométrie sphérique, nous
avons également des transformations qui sont à peu près aussi riches que dans le cas du plan.

Il s’agit d’un groupe de transformations différent, mais dans tous les cas, ce groupe s’apparente
au groupe vu dans le cadre de la géométrie euclidienne. Il possède les mêmes dimensions. Et dans
le cas de la géométrie hyperbolique, on trouve également des isométries, en aussi grandes quanti-
tés qu’en géométrie euclidienne ou sphérique, mais là encore avec une structure algébrique différente.

En tout cas, cette nouvelle étape avec Felix Klein, avec Hermann von Helmoltz, est, du point de
vue de la géométrie, un mariage entre la géométrie au sens classique, celle des figures, et l’algèbre,
puisque nous constatons l’existence d’objets algébriques, appelés groupes de transformations, la
manière dont ces opérations géométriques se multiplient entre elles, qui en fait codent, en réalité,
la géométrie. Ainsi, nous voyons cette nouvelle façon d’envisager la géométrie apparaît, d’un point
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de vue beaucoup plus algébrique, et beaucoup moins, disons, visuel.

J’aimerais maintenant aborder la contribution d’Henri Poincaré à ces questions. Henri Poincaré
était un mathématicien ayant vécu à la fin du xixe siècle et au début du xxe siècle, et qui a contri-
bué à de nombreux domaines des mathématiques. Mais il a également contribué à la géométrie,
d’une manière presque philosophique. Dans l’histoire de la géométrie que j’ai tenté de brosser, il
était frappant de constater à quel point nous étions régulièrement confrontés à la manière dont la
géométrie rend compte le monde sensible qui nous entoure.

Et le principal obstacle rencontré pour l’introduction des géométries non euclidiennes était que rien
dans les mesures que nous pouvons effectuer sur le monde qui nous entoure ne nous orientait vers
ces géométries non euclidiennes. C’est donc la confrontation de la géométrie avec le monde sensible
qui était censée imposer la géométrie euclidienne, nous la présentant comme la seule géométrie
possible. Nous avons constaté que cette voie a été explorée et qu’il était nécessaire de laisser place
à d’autres géométries que la géométrie euclidienne.

En tout cas, l’une des choses fondamentales que Poincaré a faites dans divers textes, par exemple
sur La science et l’hypothèse plusieurs textes destinés à un large public, soit dit en passant, et c’est
très intéressant, c’est qu’il a précisément repris, sur un plan philosophique, le débat sur le rapport
entre la géométrie et le monde sensible. Et c’est un point assez décisif, car il s’agit d’un tournant
en cela, c’est une affirmation catégorique de l’indépendance du développement des mathématiques
et du monde sensible. C’est pourquoi Poincaré insiste fortement sur les axiomes qui doivent régir
une géométrie, et il en tire la conclusion extrêmement importante, d’un point de vue philosophique
bien sûr, que ces axiomes de la géométrie ne sont que des conventions.

Et pourquoi une géométrie serait-elle plus vraie qu’une autre ? Il répond qu’il n’y a aucune raison
de dire qu’une géométrie est plus vraie qu’une autre ; elle peut simplement être plus pratique. Ainsi,
selon les situations que l’on considère, et donc, de toute évidence, les situations les plus simples,
les plus. naturelles que l’on rencontre, requièrent la géométrie euclidienne, mais uniquement parce
qu’elle est la méthode la plus aisée pour décrire ces situations. Et c’est là un point crucial, car cette
distance entre le développement des mathématiques et l’usage des modèles mathématiques pour
rendre compte de situations concrètes a, de fait, perverti le débat et l’expansion des géométries
non euclidiennes pendant très longtemps. On trouve même, après 1870, des contributions, sous
forme de notes à l’Académie des sciences de France, de mathématiciens, français et étrangers, qui
contestent précisément ces géométries non euclidiennes, en s’appuyant parfois sur des arguments
très fallacieux, voire nationalistes, affirmant qu’il s’agit de géométrie allemande et non française.

Mais, bien sûr, un certain nombre d’universitaires se sont élevés contre ces déclarations qui mêlaient,
de façon inacceptable, des déductions faites de manière nécessaire, qui sont le cœur du raisonne-
ment mathématique et de la confrontation avec les éléments du monde sensible qui nous entoure.
En tout cas, je crois qu’il ne faut pas négliger cette contribution d’Henri Poincaré, car cette fois,
nous sommes dans un monde sans a priori, dans lequel les géométries non euclidiennes et les espaces
courbes peuvent trouver toute leur place, et nous verrons qu’elle sera immense.

Dans ma galerie de portraits, il y a aussi un personnage quelque peu sous-estimé sur lequel j’aime-
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rais dire quelques mots, il s’agit du mathématicien italien Gregorio Ricci-Curbastro, souvent appelé
simplement Ricci, car, tout d’abord, il a apporté une contribution essentielle à la géométrie rie-
mannienne, étant le premier, en 1888, à avoir véritablement compris que l’un des outils absolument
essentiels aujourd’hui pour comprendre les mathématiques, en tout cas la géométrie riemannienne,
qui est une partie des mathématiques et de la physique théorique, concerne la dérivation covariante,
qui était implicite dans l’œuvre de Bernard Riemann et développée, de manière disons, technique et
presque symbolique, par Bruno Christoffel, sans que ce dernier en comprenne vraiment le sens. Dans
ce texte, Ricci-Curbastro donne une définition tout à fait satisfaisante de cet objet géométrique, qui
a la vertu de conduire très naturellement à la notion de tenseur de courbure de Riemann-Christoffel.
Ainsi, nous comprenons mieux ce qui permet de définir une notion de courbure dans un espace.
Bien sûr, le cas privilégié est celui de la géométrie riemannienne introduite par Bernard Riemann,
mais il existe en réalité des géométries encore plus générales qui permettent de faire émerger une
notion de courbure. Or, un autre élément qui a marqué Ricci-Curbastro, et cette fois de manière
tout à fait anodine et il a fallu un certain temps pour comprendre l’importance de cette notion,
c’est qu’en 1904, il a démontré que l’on pouvait extraire de cet objet très compliqué que j’ai déjà
mentionné, le tenseur de courbure de Riemann-Christoffel (un objet trop complexe pour pouvoir
être appréhendé simplement), dès que l’on quitte la dimension 2 ou même 3, par exemple, dès
la dimension 4, une sorte d’élément caché dans le tenseur de Riemann-Christoffel, qu’on appelle
aujourd’hui courbure de Ricci.

Et il l’a fait pour des raisons géométriques qui semblent limpides, et qui se sont avérées parfaitement
inutiles.

Ces raisons géométriques sont très simples. Lorsque j’ai évoqué la théorie des surfaces, lorsqu’on
coupe une surface par un plan perpendiculaire contenant une normale, j’ai dit que la courbure des
courbes évoluait entre un minimum et un maximum. Or, cette courbure introduit en quelque sorte
sur la surface des directions privilégiées, qui correspondent précisément aux directions des plans
pour lesquels j’ai déterminé la courbure maximale et la courbure minimale.

Eh bien, se dit Ricci-Curbastro, si je me donne une métrique riemannienne, en fait, si j’extrais
du tenseur de courbure un objet analogue à celui qui me décrivait la position de ma surface dans
l’espace 3D, je vais également identifier des directions privilégiées. Et d’une certaine manière, ces
directions privilégiées doivent avoir une signification géométrique profonde. C’est donc ce qu’il fait.
Il introduit cette courbure de Ricci, dont la nature géométrique est d’être analogue à celle d’un
produit scalaire, ce qui lui permet de définir ses orientations principales, attachées d’une certaine
manière à la géométrie. Le plus extraordinaire est que, bien que la motivation géométrique soit
limpide, elle n’a pas permis de faire beaucoup de progrès. Mais une sorte de Deus ex machina
viendra d’ailleurs, de l’extérieur des mathématiques, qui donnera à la courbure de Ricci le droit de
cité et pas seulement un droit de cité, mais une importance capitale dans le développement de la
géométrie riemannienne.

La sollicitation extérieure aux mathématiques est venue de la physique théorique. En fait, des ef-
forts, couronnés de succès, d’Albert Einstein pour développer une théorie de la gravitation générale
qui, d’une certaine manière, dépasse largement la théorie de Newton. Dans la théorie newtonienne
de la gravitation, le champ gravitationnel engendré par une particule en un point est un champ que
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nous connaissons bien, c’est un sur la distance à l’endroit où se trouve la particule massique. Et
en fait, les équations de champ sont également bien connues. La raison pour laquelle il s’agit d’une
quantité inversement proportionnelle à la distance est évidemment due au fait que, lorsque nous
appliquons ce qu’on appelle l’opérateur de Laplace à cette fonction, on ne trouve qu’une singularité
au point où se trouve la particule massique.

Et ainsi le grand saut épistémologique qu’a accompli Einstein, en partie dans les discussions avec
son voisin de l’École polytechnique fédérale de Zurich, Marcel Grossmann, le saut épistemologique
consiste à remplacer ce potentiel en 1/r de la théorie de Newton par un nouveau potentiel. Et là,
cet objet est bien plus complexe que la fonction qui représente le potentiel de gravitation de la
théorie newtonienne. Il s’agit en fait d’une métrique de Lorentz, c’est-à-dire un outil permettant
de mesurer les longueurs, comme dans le cadre de la relativité restreinte.

La relativité restreinte, également introduite par Einstein, était une théorie selon laquelle il était
impossible de séparer l’espace et le temps. Et en particulier, l’imbrication de l’espace et du temps,
donc l’espace-temps, était traduite par une nouvelle façon de mesurer les longueurs dans cet espace.
Et en fait, lorsque nous mesurons des longueurs avec des instruments de mesure classiques, nous
obtenons toujours des longueurs positives.

Ici, en raison du rôle très particulier joué par les cônes de lumière, il était nécessaire que les lon-
gueurs mesurées le long de ces cônes soient toujours nulles, qu’à l’intérieur des cônes de lumière,
les longueurs soient négatives et qu’à l’extérieur des cônes de lumière, elles soient positives. C’est
donc cet objet géométrique, correspondant à la géométrie qui structure la relativité restreinte,
qu’Einstein adoptera comme nouveau potentiel remplaçant celui de Newton. Quel est donc le saut
qu’il opère ? Il effectue un saut analogue à celui de Riemann à partir de la géométrie euclidienne,
en proposant une géométrie euclidienne généralisée, appelée géométrie riemannienne, dans laquelle
l’instrument de mesure, qui permet de mesurer les longueurs, dépend du point considéré.

Et donc, si je me place maintenant dans l’espace-temps d’Einstein, je ferai la même chose. Je m’inté-
resserai en chaque point de l’espace-temps à l’aide d’un instrument de mesure : la fameuse métrique
de Lorentz, qui peut prendre des valeurs nulles, négatives ou positives, selon la position des cônes
de lumière. Ainsi, la géométrie de l’espace-temps de la relativité générale, proposée par Einstein,
sera déterminée par cette métrique. Et bien sûr, nous devons maintenant disposer d’une équation
qui décrira comment ce potentiel, cette manière de mesurer les longueurs dans l’espace-temps, est
déterminé par les autres champs physiques.

Et donc, c’est là le saut extraordinaire qu’Einstein accomplira dans sa compétition avec David
Hilbert, le grand mathématicien du début du xxe siècle, proposer une équation à deux membres,
comme toute équation. Le membre de gauche traduira la géométrie, cette géométrie obtenue à
partir de cette métrique généralisée. Et dans le membre de droite, on décrira tous les éléments de
la physique, sauf la gravitation, puisque nous ne pensons plus à la gravitation en tant que théo-
rie physique distincte mais la gravitation modifie simplement la géométrie. Nous inscrirons donc
dans le membre de droite des équations d’Einstein tous les champs physiques susceptibles de créer,
d’engendrer, cette transformation de la répartition de la gravitation. Dans ces fameuses équations
d’Einstein, c’est le membre de gauche, là où se passe des phénomènes extraordinaires contient des

12



quantités qui se ramènent strictement à la courbure de Ricci.

L’objet que Ricci avait introduit en 1904, et qui était finalement très naturel, mais qui n’avait
pas trouvé d’utilité géométrique, devient soudain essentiel dans la théorie de la relativité générale,
puisque la façon dont la géométrie est présente dans les équations d’Einstein, c’est via la courbure
de Ricci. Cela signifie donc que la compréhension de la courbure de Ricci à partir de la métrique
deviendra un exercice absolument fondamental. Et malheureusement, ou heureusement, je ne sais
pas ce qu’il faut dire, ces équations d’Einstein sont des équations difficiles.

Elles sont du même type que les équations que j’ai mentionnées, celles qui décrivent le potentiel
gravitationnel de la théorie newtonienne, mais elles sont non linéaires, donc beaucoup plus difficiles
à résoudre. En fait, il a fallu environ 50 ans à Yvonne Choquet-Bruhat donne la première solution
relativement générale des équations d’Einstein dans son travail de thèse. Néanmoins, très rapide-
ment après l’introduction de la relativité générale par Einstein, nous avons rapidement obtenu des
solutions particulières, notamment celles proposées par Karl Schwarzschild, qui décrit une situation
physique extrêmement importante : la détermination du champ gravitationnel engendré par une
étoile à symétrie sphérique statique.

Nous découvrirons bien plus tard, plus de cinquante ans après, que c’est précisément l’objet dont
nous avons besoin pour décrire la situation physique engendrée par un trou noir. Nous nous trou-
vons donc dans cette situation assez surprenante où la généralisation de la géométrie par Riemann
est en quelque sorte assimilée par Einstein via Grossmann, mais où la façon dont elle intervient dans
une théorie physique, c’est seulement via l’un des éléments cachés dans la courbure de Riemann-
Christoffel qui est la courbure de Ricci.

Nous nous trouvons donc dans une situation assez intéressante où un modèle mathématique, dé-
veloppé pour une pure motivation purement géométrique, est absorbé par la physique, mais où
soudain les physiciens obligent les mathématiciens à examiner de beaucoup plus près un élément
particulier identifié dans cette géométrie, à savoir la courbure de Ricci.

Cette utilisation des espaces courbes va bien au-delà de la relativité générale. D’une certaine ma-
nière, on peut même dire que le concept de courbure au-delà de celle des espaces riemanniens ou
lorentziens est devenu, pour les physiciens mais aussi dans d’autres domaines, un moyen d’élaborer
des modèles extrêmement utiles. Pour reprendre l’exemple de la physique, l’interprétation moderne
des équations de Maxwell, celle de l’électromagnétisme qui mêle électricité et magnétisme, consiste
à considérer le champ électromagnétique comme étant la courbure d’un objet géométrique défini
par le potentiel électromagnétique.

Cette réapparition, dans le contexte de la courbure, a donné lieu à de nombreux travaux de phy-
sique montrant que les différents modèles utilisables en physique théorique, notamment les modèles
géométriques, s’articulent presque toujours autour de la relation entre un potentiel et le champ
qu’il engendre, ce champ étant presque toujours une courbure. Un autre domaine dans lequel les
physiciens ont également exploité cette idée est la physique du solide, où l’on sait que des phéno-
mènes extrêmement importants dans la propagation des ondes sont liés aux défauts. Ainsi, selon
la présence d’un défaut d’un type ou d’un autre dans un cristal, on fait apparaître une frustra-
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tion cristalline. Cette frustration peut être engendrée par une courbure positive, en cas de manque
d’atomes à une certaine position dans un cristal, ou, au contraire, par une courbure négative, en cas
d’excès d’atomes. Il s’agit donc d’un défaut par manque, ou d’un défaut par excès. Nous constatons
donc qu’à cet instant précis, Ces représentations géométriques et leur interprétation en termes de
courbure sont devenues des outils conceptuels essentiels en physique du solide.

Il est également intéressant de constater que, dans le monde de la finance, la volatilité, qui est un
concept qui est crucial que les financiers comprennent et, si possible, maîtrisent, peut aussi être
interprétée comme une courbure dans un certain champ décrivant l’activité financière.

Il ne fait aucun doute qu’aujourd’hui, la courbure est devenue un élément essentiel de nombreux
modèles géométriques utilisés dans des domaines scientifiques extrêmement variés. Et c’est là un
fait, certes, totalement inattendu, mais qu’il convient de souligner.

Bien entendu, les mathématiciens ne sont pas restés cantonnés à ces espaces lisses, même comme
l’espace-temps. Les physiciens acceptent les singularités ponctuelles, voire des singularités légè-
rement plus complexes, mais ne s’aventurent pas pour autant à les utiliser comme modèle pour
décrire les théories physiques d’objets extrêmement irréguliers. Les mathématiciens, quant à eux,
franchissent ce pas et considèrent aujourd’hui ces espaces comme très irréguliers. En réalité, la
question qui se pose depuis longtemps est de savoir s’il est possible dans des espaces très irrégulier
de définir une courbure. Et nous assistons ici à des progrès constants.

Le premier à proposer ce type d’espace fut Aleksandrov, un mathématicien soviétique. Mais au-
jourd’hui, de nombreuses propositions utiles ont vu le jour, à tel point que les espaces dans lesquels
le simple fait de pouvoir définir une distance entre deux points, ce que l’on appelle les espaces mé-
triques, et le fait que cette distance puisse être réalisée par des courbes éventuellement irrégulières
qui minimisent la distance, permet d’introduire des notions géométriques extrêmement importantes.
Parmi les exemples très concrets de ces espaces irréguliers, on peut citer les graphes décrivant les
liens du réseau internet. Le réseau Internet est un réseau assez complexe comportant de nombreuses
liaisons entre des points d’activité informatique où circule une grande quantité d’informations peut
être traités, reliés entre eux par des réseaux.

Et puis, bien sûr, les questions importantes pour Internet concernent sa stabilité en tant que sys-
tème de communication. Les notions de courbure pourront y être définies en des termes un peu plus
complexes que dans les termes habituels, mais néanmoins qui permettent de déduire des propriétés
géométriques intéressantes. La nouveauté qu’il fallait imaginer, c’est que nous ne sommes plus dans
une situation où nous pouvons calculer la courbure comme nous le faisions dans les espaces réguliers.

Par contre, on peut s’intéresser à des bornes sur la courbure. On peut ainsi décrire un espace irré-
gulier si sa courbure est comprise entre certaines bornes. On ne peut plus la calculer exactement,
mais malgré tout, les propriétés géométriques que j’ai mentionnées à savoir que dans des espaces
à courbure négative, on observe généralement une sorte d’explosion exponentielle de la diffusion
de l’information, et dans les espaces à courbure positive, on a l’impression d’une concentration des
choses, comme sur une sphère où tout ce qui va du pôle Nord au pôle Sud se retrouvent, ici, on a
des propriétés analogues, mais en ayant des bornes sur la courbure.
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Ces espaces irréguliers ont désormais complètement droit de cité en mathématiques et ils ont donné
lieu à des travaux d’une grande profondeur. Mikhaïl Gromov fut l’un de ceux qui ont démontré
l’intérêt que l’on pouvait porter à la compréhension de ces espaces irréguliers, à l’étude d’espaces
irréguliers à courbure particulière afin d’en déduire des propriétés de convergence, et à les traiter
comme des objets géométriques naturels sans se préoccuper outre mesure de leur sauvagerie, i.e.
de la complexité des irrégularités qu’ils présentent.

Parmi les espaces irréguliers que les mathématiciens ont appris à apprivoiser d’une certaine façon, il
existe précisément les espaces qui apparaissent dans la géométrie non commutative d’Alain Connes.
Alors, évidemment, cette géométrie a été fondamentalement motivée par les théories physiques de
la mécanique quantique afin de disposer d’espaces permettant de réaliser précisément la subtilité
liée aux relations d’incertitude de Heisenberg, qui ont pour conséquence que nous ne pouvons pas
simultanément connaître les positions et les vitesses des particules sans qu’il y ait incertitude sur
ces valeurs. Ainsi, parmi les progrès fantastiques réalisés par Alain Connes dans son programme très
ambitieux de développement de cette géométrie non commutative, figure le fait qu’il es partie d’une
géométrie assez informe jusqu’au point de disposer aujourd’hui d’une géométrie non commutative.
Et là, bien sûr, il faut tenir compte du fait que l’espace sur lequel la géométrie non commutative est
bâtie est un espace irrégulier, et le plus fascinant, c’est que la partie dans les modèles qu’il a propo-
sés qui lui permet généralement de discuter du modèle standard des particules élémentaires, donc
des modèles non commutatifs, eh bien, comme par hasard, l’une des quantités dont il a absolument
besoin pour élaborer la théorie, analogue au lagrangien de la théorie du modèle standard, qui est à
la base de cette théorie physique, eh bien, il s’agit encore une fois d’un concept de courbure dans
cette géométrie. Mais cette courbure, la seule composante qui puisse être définie, est strictement
celui qui permet de définir, comme disent les physiciens, le lagrangien, c’est-à-dire l’expression à
partir de laquelle nous allons déduire les équations du champ.

Et donc, une fois de plus, nous nous retrouvons dans cette position incroyable où la courbure, ou
une certaine manière d’exprimer la courbure dans ces espaces irréguliers, est la seule chose qui
puisse être définie et la seule chose dont nous ayons besoin pour l’utiliser en physique. Donc, il y a
une sorte de rencontre étonnante entre les possibilités mathématiques et les conditions nécessaires
pour que cette approche mathématique puisse servir de modèle en physique. Cette rencontre est
fascinante et cela souligne combien les développements de la géométrie sont indissociables de leurs
applications potentielles dans les théories physiques, même les plus complexes.

Le modèle standard, fruit d’un long travail des physiciens pour décrire toutes les particules élémen-
taires, reste un modèle complexe, comportant de nombreux éléments différents. On espère que les
travaux du LHC à Genève ont permis de mettre la main sur le dernier constituant qui semblait
manquer, qui était le fameux boson de Higgs. On n’en est pas encore tout à fait sûr, mais en tout
cas on a de vraies pistes dans ce sens. Et donc la structure interne de cette théorie, telle qu’elle
est présentée par Alain Connes, et dans le cadre de sa géométrie non commutative, est encore un
exemple supplémentaire, un exemple particulièrement illustratif de cette symbiose, de cette fusion
entre les modèles géométriques et les modèles signifiants du point de vue physique.

Alors il y a une chose encore plus étonnante qui s’est produite dans les vingt dernières années, qui
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était, comme je l’ai dit tout à l’heure, la courbure de Ricci, qui est vraiment le cœur des équations
d’Einstein. Einstein avait tendance, d’ailleurs, quand il parlait de ces équations, à penser un palais
à deux ailes. Une aile construite en marbre noble, qui était la partie géométrique avec la courbure
de Ricci, et une partie construite en bois inférieur, qui était la façon dont les champs physiques,
autres que gravitationnels, d’une certaine façon, déterminent la gravitation.

Pourquoi je dis ça ? Parce que les mathématiciens, progressivement, ont commencé à se dire que
cette courbure de Ricci méritait d’être étudiée pour elle-même, et en particulier, elle méritait qu’on
la comprenne, un petit peu comme les physiciens, finalement, la font apparaître dans une formu-
lation des équations d’Einstein, ou paradoxalement, alors que les équations d’Einstein parlent de
l’espace-temps, donc d’un objet à quatre dimensions, en fait, il y a une façon d’écrire les équa-
tions d’Einstein qui consiste à réintroduire la séparation entre l’espace et le temps. Autrement dit,
à casser les équations d’Einstein en plusieurs niveaux, et cette approche, qu’on appelle souvent
l’approche ADM, Arnowitt-Deser-Misner, justement fait apparaître une équation d’évolution dans
laquelle l’évolution de la métrique sur une hypersurface du type espace, donc à trois dimensions,
dans cet espace à quatre dimensions, donc la façon de mesurer les longueurs, comme je l’ai dit,
fait apparaître des notions habituelles de longueur quand on regarde les dimensions spatiales, les
directions où la longueur est négative sont les directions au contraire qui sont les directions tem-
porelles, et la jonction entre les deux est faite par les directions suivies par les trajectoires de lumière.

Eh bien, donc, sur ces hypersurfaces du type espace, donc on trouve un espace à trois dimensions
avec une géométrie à la Riemann, une géométrie riemannienne, eh bien, quand on casse ces équa-
tions d’Einstein en séparant le temps et l’espace, il y a un morceau de cette évolution qui peut
apparaître comme une évolution de la métrique à trois dimensions, pilotée par la courbure de Ricci
à trois dimensions. Donc brusquement, ça donne l’idée de penser à cette courbure de Ricci, en fait,
comme créant une dynamique dans l’espace des métriques. Et ce point de vue a été utilisé par les
physiciens, mais les mathématiciens ont commencé à s’en servir en tant que tel.

Et en fait, cette approche qu’on appelle aujourd’hui le flot de Ricci, puisqu’on essaye de faire évo-
luer une métrique en suivant la dynamique déterminée par la courbure de Ricci, j’ai eu l’occasion
de poser cette question la première fois : “Est-ce que finalement ce flot existe ?”. C’est-à-dire est-ce
qu’on peut vraiment suivre cette évolution et est-ce qu’on peut vraiment la résoudre mathémati-
quement ? Celui qui a vraiment fait le travail décisif s’appelle Richard Hamilton. Il y en a d’autres
qui ont contribué, comme Dennis DeTurck, ont vraiment montré que ce flot de Ricci existait au
moins pour des temps courts. Autrement dit, on peut déformer une métrique dans la direction de
sa courbure de Ricci et suivre cette évolution pendant des temps courts.

Et Richard Hamilton a trouvé de cette façon des résultats géométriques absolument superbes sur
les espaces à trois dimensions. Mais vraiment, là, le bouquet est venu des travaux de Grigori Per-
elman, qui lui a repris à son compte cette approche, dans un contexte où personne n’avait osé aller
jusqu’à maintenant, c’est-à-dire de s’intéresser à la fameuse conjecture de Poincaré sur les espaces à
trois dimensions. Poincaré a posé la question de savoir si quand on s’intéresse à des espaces à trois
dimensions qui sont bornés, comme on dit, c’est-à-dire des espaces compacts, c’est la terminologie
des mathématiciens, s’ils sont suffisamment simples, simples pour Poincaré, ça veut dire que toutes
les fois qu’on dessine une courbe fermée sur eux, on peut toujours déformer la courbe pour qu’elle
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se contracte sur un point.

Donc c’est clair qu’un objet comme un tore, par exemple, une chambre à air, est exclu. Puisque
si je fais le tour du trou de la chambre à air, à un moment, je ne vais pas pouvoir contracter ce
chemin jusqu’à se fermer sur un point. Par contre, si je dessine une telle courbe sur une sphère, je
peux toujours, ne serait-ce qu’en ramenant tout ce qui se passe en dehors du pôle Sud vers le pôle
Nord, je peux toujours contracter.

Poincaré avait posé la question, si j’ai un espace à trois dimensions fermé sur lui-même, compact
on dirait, qui a la propriété que tout chemin fermé se contracte en un point, est-ce qu’à trois di-
mensions, cet espace est nécessairement une sphère ? Ça, ça paraissait un pari très, très ambitieux,
puisqu’on a énormément d’exemples d’espaces à trois dimensions fermés sur eux-mêmes. Et en fait,
Grisha Perelman a finalement résolu cette conjecture. Et il l’a fait de la façon la plus étonnante,
puisqu’il a mis une métrique arbitraire sur cet espace. Il a fait évoluer cette métrique par le flot de
Ricci. Il se pouvait très bien qu’à un moment, l’espace, à cause de cette évolution de sa métrique,
se pince, c’est-à-dire qu’il y ait un morceau de l’espace qui soit amené à se séparer du morceau qu’il
avait. Il était capable de suivre ce qui se passait lors de cet accident, cette singularité, et de vérifier
que les propriétés de départ qu’on avait mises, à savoir que, en particulier, les lacets se contrac-
taient et pouvaient être conservés, qu’on gardait suffisamment d’informations sur la métrique qu’on
déformait pour qu’on puisse recommencer à déformer la métrique.

Et qu’en un nombre fini de pas, on se trouve avec un espace auquel il n’y a plus d’accidents. Et on
sait que s’il n’y a plus d’accidents, la seule façon dont le flot de Ricci peut converger, c’est vers une
sphère toute ronde. Autrement dit, après avoir contrôlé la façon dont les accidents se passaient,
on est parti d’un espace, on est arrivé à une sphère, et Grigori Perelman a pu montrer que les
morceaux dont on se séparait à chaque fois étaient toujours eux-mêmes des sphères.

Autrement dit, l’espace dont on est parti était obtenu à partir d’une sphère en attachant des sphères.
Et quand on attache des sphères à une sphère, on reste toujours sur une sphère. Donc finalement,
grâce à cette approche, la question que posait Poincaré était une question de topologie, a priori
dans laquelle la notion de longueur, de métrique n’avait aucun rôle à jouer.

En rajoutant une métrique arbitraire, puis en utilisant le flot de Ricci, et en le contrôlant, Gri-
sha (Grigori) Perelman a pu démontrer la conjecture de Poincaré, qui était quand même une des
grandes conjectures topologiques du début du xxe siècle, et il nous a montré finalement qu’en
introduisant des idées métriques dans ce problème topologique, on pouvait finalement résoudre
le problème topologique, qui était d’une certaine façon une preuve de l’importance capitale de la
courbure de Ricci dans les problèmes de mathématiques. Et en se rappelant qu’un mathématicien
a introduit la courbure de Ricci, les physiciens ont convaincu les mathématiciens de son impor-
tance, et finalement, les mathématiciens sont revenus en prenant au sérieux cette importance pour
résoudre d’autres problèmes de mathématiques. Donc, un très beau cheminement entre des modes
de pensée, des cadres de pensée très différents, qui montre à quel point les espaces courbes sont
aujourd’hui au cœur aussi bien des mathématiques que de la physique théorique.
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