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INTRODUCTION. - Afin de mettre en évidence certaines propriétés du champ de

gravitation, je voudrais comparer les équations du mouvement d’une particule dans
trois cas particuliers :

(1) Le mouvement d’une particule de charge e dans un électromagnétique
dans un espace plan ;

(2) Le mouvement précèdent dans un espace de Riemeann donne ;

(3) Lc mouvement d’une particule de nasse Il dans un chanp do gravit-ation 
ble.

A l’approximation de la correotion de radiation (ternes d’ordre e2 dans le cas

(1) ot (2), tenues d’ordre m2 dans le cas (3)), les équations de ces mouvements
s’écrivent respectivement :

NOTATIONS.

est ligne d’univers de la particule, T est le temps propre

03B1 ~ d2 d2 z (T) + 039303B103B203B3 zP §’ . Dans le cas (1), r§y est nul ; dans le cas (2) ,
dï ~ 

039303B1 est donne ; dans le cas (3) , s’exprime en fonction d’un tenseur 

que de référence dont h-.. relation avec le tenseur métrique total sera précise au
deuxième paragraphe.

est le clia.;.=p électromagnétique qui, ajoute aux ondes retardées, donne le

champ totale Dans le cas (3) , il n’existe pas de termes équivalents à le
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champ de gravitation réapparaît pas en tant que tel, il est inclu dans la métrique.

Les termes 3 et sont des ternes introduits dans les équations par la
courburc de ce sont ces ternes que nous allons étudier dans cet exposée

c est la vitesse de la lumière, G est la constante de gravitation univer-
solle.

Un point désigne une dérivée covariante, une désigne une dérivée or-
dinaire.

1. Etude de l’ équation (2) .

a. Propriétés générales de J03B1 (cf. 

Los s sont les ternes de queue des fonctions de Green correspondant aux équa-
tions vectorielles covariantos suivantes :

Los fonctions de Green avancées et retardées correspondant à cette équation s’é-

crivent :

. it 2 s2 o’ u a n est li. géodésique, a &#x3E; 0 pour un intervalle du

genre espace, a est la fonction 03A9 de 

g 
p (x , x’) est le bivecteur dc transport parallèle 1e long dc la

que de x â x’ o

Les sont donnés sous forme d’un développement en série dont chaque
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terme s’obtient, par récurrence, en intégrant un système d’équations différentiel"
les ordinaires le long des géodésiques originaires de x (ou de x’ ).

b. Calcul de 3~ dans un champ de gravitation faible à sphérique

Soit un champ de gravitation faible g , les v , peuvent alors 

obtenus par un procédé variationnel comme suit : 
La dérivée variationnelle de l’équation satisfaite par G** . :H-

x’) .

donne l’équation satisfaite par 2014"B ’/2014 . que l’on met sous la forme s

et dont la solution peut s’écrire :

Dans le cas d’un champ faible, on peut, grâce à l’expression ci-dessus, développer
... l’ 0... , plansérie de Taylor autour de la fonction correspondante G 

0- 
de 1 espace plan

~ 
~ ,

Les tenues de queue v t s’obtiennent par comparaison des équations (4) et (5)~
A l’approximation de l’équation (5), on obtient
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Nous avons entrepris le calcul de 3~ dans le cas suivant :

- champ statique à symétrie sphérique autour d’un point 
- mouvement rectiligne uniforme le long d’une droite passant par ri.

Cette approximation est valide lorsque la particule est suffisamment rapide et

suffisamment loin de la source du champ*

ri position de la Les sont alors des fonctions de
source du champ 

X , discontinues et singulières pour
une source ponctuelle a u point rite 1 que

r position de la
particule au temps t ct - et’ = + Ir! - [

c’est-à-dire lorsque le temps nécessaire pour

r~ variable dl intégration . que particule a ille de r en rI soit
dans S 03B1-position de la particule au temps t1 égal au temps necessaire pour qu un se

propage avec la vitesse c de r t en puis retourne en r. Les v , peu-

vent être rendues régulières en remplaçant la source ponctuelle par une source

étendue de rayon infinitésimale

Une des quantités physiques intéressantes les plus simples à calculer à partir

des J03B1 est la perte d’énergie par radiation

Le calcul de W n’est pas terminée il semble qu’il soit possible de le mener

à bien par un calcul algébrique dont la seule difficulté soit la longueur.

2. Etude de l’équation (3) . 
’ 

’

Dans ce cas, il ne pas d’ une particule dans champ de gravitation donné

comme dans le cas (2) ~ mais d’une particule de masse m en interaction avec le

champ de gravitation telle qu’elle est décrite le système d’équations dyna-
miques :
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dans lequel la dérivée covariante de z ~~) est prise par rapport tenseur mé-

trique total du système (ou tenseur métrique vrai)

Le système (6) ne détermine que formellement le mouvement de la particule puisque

le tenseur métrique est infini sur la ligne d’univers de la particule.

Pour contourner cette difficulté, on peut séparer du tenseur métrique vrai, un

tenseur métrique de référence g :

de telle sorte que g soit fini partollt, = 0 et que

Par une méthode absolument covariante qui est, à la Relativité générale , ce qu’ est,

à la Relativité restreinte, la méthode utilisée par Dirac pour établir l’équation

(1) , on obtient 1’équation (3)

La masse m0 de l’équation (3) est la masse observée obtenue par renormalisation

de la masse m du système (6).

On remarque que le terme en a un signe un signe qui.

correspond à une accélération. La présence interdit toute conclusion

hâtive et spectaculaire de ce fait$ Seul 1~ effet global du ter;ne en et du

terme a un sens physique, et l’on ne peut pas conclure de la présence de ce

signe positif qu’il y a accélération de la particule par émission éI.e radiation 1
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