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Problémes de Géométrie Conforme

J. Lelong-Ferrand

Soit (M, g) une variété riemannienne de classe C* et de dimension n = 3. Plagons
nous d’abord au point de vue usuel de la géométrie différentielle et notons C(M, g)
[resp. I(M, g)]le groupe des C>-difféomorphismes conformes de M [resp. le groupe
des isométries de M]. D’apres les théorémes de Montgomery et Kobayashi on sait
que C(M, g) est un groupe de Lie pour la topologie compacte ouverte: c’est en
effect, le groupe des automorphismes de la structure conforme de M, qui est une
G-structure de type fini. Un sous-groupe G de C(M, g) est dit essentiel s’il n’existe
aucune fonction réguliére p sur M telle que G = I(M, e%g), inessentiel dans le cas
contraire. Cela étant le probléme suivant (conjecture de Lichnérowicz) a fait I’objet
de nombreux travaux:

Existe-t-il des variétés non conformes & I’espace euclidien (E*, gg) ou a la sphére
standard (S”, g¢) pour lesquelles la composante connexe Cy(M, g) de C(M, g) soit
sssentielle?

Ce probléme a d’abord été résolu sous diverses hypothéses supplémentaires,
:n particulier: M est compacte [5], [9]. [10] et: (M, g) est une variété d’Einstein
compléte [13] (pour une bibliographie plus détaillée, voir [5] ou [9]).

Une réponse définitive (el négative) nous est maintenani donnée par le théoréme
suivant de D.V. Alekseevski [1]:

THEOREME 1. Si Cy(M, g) est essentiel, (M, g) est conforme & (E",go) ou & (S, go)-

On en déduit facilement:

THEOREME 1 BIS. Si (M, g) est compacte et si C(M, g) est non compact, (M, g)
est conforme & (S*, go).

Ce dernier résultat, qui apparait maintenant comme un corollaire du Théoréme 1,
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avait €té établi presque simultanément par M. Obata et moi-méme, par des
méthodes essenticllement différentes: c’est par une étude précise des modules de
continuité des transformations quasi-conformes que j’établis ’€quicontinuité de
C(M, g) lorsque (M, g) n’est pas conforme 2 (S”, go); M. Obata utilise au contraire
les techniques propres 4 la géométrie riemannienne et prouve que, si Cy(M, g) est
non compact, (M, g) est conformément plate; il y parvient en étudiant 1’action de
Co(M, g) sur 'ouvert formé des points de M ou le tenseur de courbure conforme est
non nul. Par un théoréme de N. Kuiper [4] on est alors ramené & I’étude d’un ouvert
de (S%, go); on utilise Ie fait que Co(M, g) contient un sous-groupe essentiel a un
paramétre et qu'un tel sous-groupe G admet un point fixe; le résultat est obtenu
par une analyse du comportement de G en ses points fixes.

La démonstration du Théoréme 1 donnée par D.V. Alekseevski n’est pas sans
analogie avec celle du Théoréme 1 bis par Obata. Elle est fondée sur la notion de
groupe isotropiquement compact, i.e., tel que le sous-groupe d’isotropie de chaque
P € M soit compact; et elle se décompose en trois parties:

(A) Un sous-groupe essentiel G de C(M, g) n’est pas isotropiquement compact.

(B) Si Cy(M, g) n’est pas isotropiquement compact, il contient un sous-groupe
essentiel 4 un paramétre.

(O) Si (M, g) admet un groupe essentiel 3 un paramétre de transformations con-
formes (M, g) est conforme & (E*, g¢) ou a (S*, gq).

Pour établier (A), D.V. Alekseevski considére un sous-groupe fermé et isotropi-
quement compact G de C(M, g) et montre tout d’abord que G opére proprement
dans M au sens de Bourbaki; puis il construit, sur un voisinage G-invariant U,
d’un point arbitraire p € M, une métrique G-invariante et conforme i g. Enfin,
il construit une partition G-invariante de I'unité, subordonnée au recouvrement
{U,}, et il en déduit I'existence sur M d’une métrique G—invariante et conforme
4 g, prouvant ainsi que G est inessentiel.

Pour établier (B) il suffit de prouver que si le groupe d’isotropie C, d’un point P
est non compact, sa composante connexe est non compacte. On se raméne au cas
ou Cy(M, g) est transitif en considérant 'orbite M’ de p, et en prouvant que le
groupe facteur C’ agissant sur M’ est essentiel. La fin de la démonstration utilise
une représentation de C, dans C(E,) et une étude fine des transformations confor-
mes au voisinage de leurs points fixes, fondée sur un développement limité d’ordre 2.

Pour établier (C) on montre d’abord que chaque point fixe p d’un sous-groupe
essentiel & un paramétre de Cy(M, g) admet un voisinage ouvert et G-invariant ¥
sur lequel le tenseur de courbure conforme s’annule; il ne reste ensuite qu’a prouver
que dV est vide ou réduit & un point.

Enfin D.V. Alekseevski signale en note que le Théoréme 1 reste vrai si 'on rem-
place Co(M, g) par C(M, g) lui-méme.

Par contre, il n’existe pas de résultat analogue pour les variétés pseudo-rieman-
niennes.

Etude directe du cas compact. Etant donnée la complexité des techniques utilisées
par D.V. Alekseevski il n’est peut-étre pas sans intérét de rappeler ici la méthode
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relativement élémentaire que j’ai utilisée dans le cas compact; de plus cette méthode
fait apparaitre le Théoréme 1 bis comme une conséquence d’un théoréme d’analyse
plus général, relatif aux transformations quasi-conformes.

DerNITION 1. Soit (M, g) et (M, §) deux variétés riemanniennes de classe C! et de
dimension # 2 2. Nous dirons qu’un homeomorphisme ¢ : M — M est k-quasi-
conforme si:

(i) ¢ est ACL~ (i.e., si ¢ est absolument continue sur presque toute ligne coordon-
née relative & un atlas donné, et si ses dérivées partielles appartiennent a Lf, (M)).

(ii) Pour presque tout x € M la différentielle de ¢ et son jacobien métrique J,
vérifient:

¢)) Jyx) #0 et [¢)|r < knTy(x)

(la condition (i) entrainant I’existence de ¢'(x) pour presque tout x).

En tout point x oll ¢'(x) existe et vérifie ¢'(x) # 0, on a nécessairement
|#'(x) |» = J(x). On a donc toujours k = 1;et si k = 1, ¢'(x) est une similitude:
les homéomorphismes 1-quasi-conformes peuvent donc étre dits conformes; et,
pour prouver que ce sont des transformations conformes au sens classique, il suffit
de prouver que ce sont des diffomorphismes (voir plus loin).

Désignons par Q,(M, M) Pensemble des homéomorphismes k-quasi-conformes
de M sur M, muni de la topologie compacte ouverte. On a alors [Sb, Théoréme
9.3]:

THEOREME 2. Si M, M sont compactes et si Q,(M, M) n’est pas compact, il existe
un homéomorphisme K-quasi-conforme de (M, g) sur (S*, go).

En prenant M = M et k = 1, on en déduit:

COROLLAIRE. Si le groupe des homéomorphismes conformes d'une variété rieman-
nienne compacte (M, g) n’est pas compact il existe un homéomorphisme conforme de
(M’ g) sur (S”’ g())

Si (M, g) et (M, g) sont de classe C*, on peut prouver que les homéomorphismes
conformes de (M, g) sur (M, g) sont des difféomorphismes (voir plus loin). Du
corollaire précédent on déduit alors que le Théoréme 1 bis reste vrai en remplagant
Co(M, g) par C(M, g).

La théorie générale des transformations quasi-conformes permet de montrer
que Q,(M, M) est une partie fermée de 'ensemble des homéomorphismes de M
sur M; pour prouver que Q,(M, M) est compact il suffit donc (si M et M sont com-
pactes) de prouver que la famille Q,(M, M) et la famille formée par les réciproques
des éléments de Q,(M, M) sont équicontinues. Nous allons donner un apercu de
la démonstration.

Problémes d’équicontinuité, La construction de modules de continuité effectuée
dans [Sb] pour les applications quasi-conformes a été reprise de maniére plus
systématique dans [8); pour la rendre plus intuitive, nous introduirons ici une
définition:

DzrINITION 2. Une partie X de la variété (M .g) sera dite de diamétre apparent
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=< 0 s’il existe une partie compacte propre de M, contenant X et difféomorphe
a une boule de E», dont la frontiére ait un diamétre géodésique < d.

La proposition suivante résulte alors du Lemme (5.2) de [8] et du fait qu’une
variét€ riemannienne est localement difféomorphe 4 E»:

PROPOSITION 1. Les notations étant celles de la Définition 1, soit ¢:(M, g) —
(M, g) une application ACL" verifiant

) , JJ '] dz < m.

Pour chaque compact K = M, il existe un nombre q; > 0, ne dépendant que de K,
tel que I'image par ¢ d’'une boule géodésique centrée sur K et de rayon p < «, ait,
dans M, un diamétre apparent inférieur & (mB,[|Log r|)'/», ot B, désigne une con-
stante dépendant seulement de n.

La condition (2) est vérifiée par tout homéomorphisme k-quasi-conforme ¢:M —
M, si M est de mesure finie < mk~». D’autre part, on a la proposition suivante,
qui résulte du Lemme 7.3 de [Sb] et qui permet d’établir un lien entre le diamétre
apparent et le vrai diamétre.

PROPOSITION 2. Si (M, g) est compacte il existe un nombre T > 0 possédant la
propriété suivante: si X est une partie de M de diamétre apparent 0 < 7, l'un des
ensembles X, M\X a un diamétre géodésique < 40.

Des Propasitions 1 et 2 on déduit le critére d’équicontinuité qui suit:

ProPOSITION 3. Soit @ une famille d’homéomorphismes k-quasi-conformes de la
variété compacte (M, g) sur la variété compacte (M, g); pour que @ soit uniformément
équicontinue, il suffit qu’il existe un nombre h > 0 tel qu’a chaque ¢€ @ on puisse
associer trois points ay, a;, a3 de M vérifiant dy(a;, a;) = h et dg(d(ay), ¢(a;))
= hpouri, j=1,2,3( #J)(dy et dg désignant les distances géodésiques sur M
et M).

Si la famille @ n’est pas équicontinue, ce lemme montre, en gros, qu’on peut en
extraire une suite convergeant vers une transformation dégénérée. De fagon précise
ona:

PROPOSITION 4. Soit @ une famille non équicontinue d’homéomorphismes k-quasi-
conformes de la variété compacte (M, g) sur la variété compacte (M, g); alors il
existe une suite (§,) extraite de ®, un point a de M et un point b de M tels que:

(i) la suite (¢ (x)) converge vers b pour tout x € M\{a}, la convergence étant uni-
Jorme sur tout compact de M\{a};

(ii) la suite (¢;(y)) converge vers a pour tout y € M\{b}, la convergence étant
uniforme sur tout compact de M\{b}.

Par une nouvelle application de la Proposition 3, on montre que I'existence
d’une telle suite (¢,) implique celle d’'un homéomorphisme k-quasi-conforme de
M\{a} sur (E#, gy); et, par prolongement, on en déduit I’existence d’'un homéomor-
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phisme k-quasi-conforme de M sur (S, gy) (cf. demonstration du Théoréme 8
dans [5b]); d’otr le Théoréme 2.

Notons que existence d’une suite de difféfomorphismes conformes de (M, g)
sur (M, g) vérifiant (i) et (ii) permettrait de montrer que (M, g) et (M, g) sont con-
formément plates. On en déduirait une démonstration “mixte’” du Théoréme 1 bis,

Constructions d’invariantes conformes. C’est pour préparer une démonstration
du Théoréme 1 que, dans [7] j’avais cherché A construire, sur les variétés riemanien-
nes non compactes, des métriques (au sens général) conformément invariantes. En
fait il s’agit d’invariants globaux liés & la structure conforme de (M, g), et qui pré-
sentent par eux-mémes un intérét, méme lorsque le groupe conforme de (M, g) se
réduit & I'identité. J’en dirai donc ici quelques mots.

A chaque variélé (M, g) de dimension » associons la classe H*(M) formée des
fonctions numériques u, continues et ACL” sur M, telles que:

() I(u, M) = [y |Vuulr dr < o0;

(ii) pour chaque partie ouverte, connexe et relativement compacte U de M, on
ait:

sup u(x) = sup u(x), inf u(x) = sup u(x).
xsoU kU x=U x<sU

Si la famille H*(M) sépare les points de M, on obtient une distance §,, sur M en
posant:

_sup  |u(x) — u(y)|
om(%,y) = uenvin A, M)+
Cette distance est (comme I'intégrale I(u, M)) invariante par déformation con-
forme de M; et la topologie qu’elle définit est moins fine que celle de (M, g): pour
cette distance C(M, g) est donc un groupe d’isométries.

Interprétation fonctionnelle des homéomorphismes conformes. Une autre méthode
d’approche des transformations conformes consiste a leur associer des opérateurs
linéaires.

A chaque variété (M, g) de dimension n = 2 associons I'algébre de Banach
A(M, g) formée des fonctions numériques continues et ACL” sur M, vérifiant:
I, M) = {y |Vu|" dr < oo el tendant vers zéro 3 l'infini, pour la norme y(u) =
l4]|eo + [2Cu, MY,

Si ¢ : M —+ M est une application continue, notons ¢* P'application ¥(M) —
€(M), v — v o ¢. On montre alors [6] que 'application ¢ — ¢* definil une bijec-
tion de I'ensemble des homéomorphismes k-quasi-conformes ¢ : M — M, sur
I'ensemble des isomorphismes de norme < k de A(M, g) sur A(M, g). Le groupe
conforme C(M, g) s’identifie donc & une partie de la sphére unité de L(A(M, 2));
et le probléme qui se pose est de comparer les diverses topologies que I'on peut
définir naturellement sur cet ensemble.

Problémes de régularité. Pour faire le lien entre les méthodes d’analyse utilisées
dans [5] et celles de la géométrie différentielle, il reste & prouver que tout homéo-
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morphisme conforme d’une variété riemannienne de classe C* sur une variété de
classe C* est lui-méme de classe C*. L’historique du cas euclidien, que nous allons
esquisser, montre que ce probléme n’est pas trivial.

En 1850 Liouville prouvait que tout difféomorphisme conforme ¢ d’ouverts de
(E*, go) n = 3 était la restriction d’une transformation de Moébius. Mais sa démons-
tration supposait implicitement ¢ de classe C3; et 4 ma connaissance, ce n’est qu’en
1947 qu’il fut prouvé, par P. Hartman [3], qu’il suffisait de supposer ¢ de classe C1:
la démonstration de P. Hartman utilise les propriétés des systémes différentiels
elliptiques sur-déterminés.

En 1960, J.G. Resetnyak [11] prouve que tout homéomorphisme conforme
d’ouverts de R* est de classe C3; et, en 1962 F.W. Gehring [2] donne une autre
démonstration du méme résultat: tous deux utilisent les propriétés des solutions
d’équations elliptiques, mais la démonstration de Gehring utilise les extrémales
de lintégrale _ﬂVu]” dr, tandis que celle de Resetnyak est fondée sur des inégalités
isopérimétriques et utilise la théorie du potentiel.

Aucune de ces démonstrations ne se généralise simplement aux variétés rieman-
niennes; mais I’étude du cas riemannien, bien que plus général, est facilitée par I'in-
troduction de la fonction courbure scalaire. En effet, tout homéomorphisme con-
forme ¢: (M, g) — (M, g) peut étre considéré comme une isométrie de (M, |¢'l2g)
sur (M, g). Or, si u est de classe C? sur M, la courbure scalaire R, de (M, ut/(»—2g)
est liée 3 la courbure scalaire R de (M, g) par

4/ (n—2) —
w Ru=R—4:—14i.

On peut donc s’attendre A ce que la fonction u = |¢'|*~2/2 admette au sens
des distributions, un laplacien vérifiant:

3 Au = (Ru — Ro ¢u(n+2)/<n—2))

n—2
4n—1)
ou R désigne la courbure scalaire de (¥, g); et on en déduit que u (donc aussi ¢)
est de classe C* : on peut en effet se ramener localement au casou R = R = 0,
auquel cas u = |¢’l‘"—2”2 est harmonique. Cependant, une démonstration rigou-

reuse de (3) s’impose: ce sera I’objet d’un autre article.
On notera que la demonstration de Resetnyak consiste & prouver, par des con-
sidérations gedmeétriques, que, dans le cas euclidien, |¢’| (n—2) /2 gst sous-harmonique.

Un probléme ouvert. Convenons de dire qu’une application continue (non néces-
sairement bijective) ¢: (M, g) — (M, g) est conforme si elle est ACL>, si elle con-
serve I'orientation et si, pour presque tout x € M, ¢'(x) est une similitude (c’est une
extension aux variétés riemanniennes de la notion d’application 1—quasi-réguliére).

En 1967, Resetnyak [12] a pu montrer que toute application conforme d’un
ouvert de (E», go) dans E* était un homéomorphisme (donc la restriction d’une
transformation de M&bius). Pour les variétés riemanniennes, le probléme se pose
donc de savoir s’il existe des applications conformes qui ne sont pas localement
des difféomorphismes.
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Le probléme se pose également de savoir si, pour des variétés de classe C1, tout
homéomorphisme conforme est aussi de classe C1.
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