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Les sons qui frappent nos oreilles proviennent de modes de vibrations
infiniment variés des corps qui nous entourent. Ces divers modes peuvent
plus ou moins coexister ; mais il peut se faire que I'un d’eux, simple,
domine nettement tous les autres, et, de toutes facons, pour commencer
& voir clair dans des phénoménes de cette complexité, il est bon d’exami-
ner d’abord le cas d’un systéme matériel & un seul degré de liberté, c’est-a-
dire dont la configuration & chaque instant peut étre définie par un seul
nombre : telle est la position d’un point sur une ligne droite donnée ;
en admettant, comme il est naturel dans une premiére étude des phéno-
ménes élastiques, que I’énergie potentielle soit proportionnelle au carré
de la distance & la position d’équilibre (élongation), et d’autre part que la
somme des énergies potentielle et cinétique se conserve, on apergoit
la loi du mouvement : oscillation sinusoidale ot le carré de la fréquence
est en raison directe de la « rigidité » et en raison inverse de « I'inertie » (1)
(les deux coefficients de rigidité et d’inertie étant les quotients constants
respectivement de 1'énergie potentielle et de 1'énergie cinétique par les
demi-carrés de I'élongation et de la vitesse). La méme loi simple vaut
naturzllement pour bien d’autres phénomeénes que ceux auxquels donne
lieu I’élasticité matérielle ; si un condensateur se décharge & travers une
bobine de gros fil conducteur de résistance négligeable, la charge élec-
trique de chaque armature est une fonction sinusoidale du temps ; aux
facteurs de rigidité et d’inertie sont simplement substitués I'inverse de la

(1) Autrement dit, le point considéré est simplement soumis & une attraction d'un
centre fixe proportionnelle & la distance ; son « coefficient d'inertie » est sa « masse »



414 LA PENSEE MATHEMATIQUE

capacité du condensateur, et le coefficient de self induction de la bobine.

Imaginons maintenant un systéme matériel a plusieurs degrés de
liberté, trois par exemple ; il sera nécessaire et suffisant, pour préciser sa
configuration, de se donner trois nombres : tel serait un point matériel
libre dans 'espace. Admettons que son énergie potentielle soit une fone-
tion homogeéne et du second degré des coordonnées, définie positive, et
que ici encore « le systéme goit conservatif ». Les éléments de 'analyse
mathématique permettent de voir que son mouvement le plus général
peut étre considéré comme la superposition de trois mouvements oscilla-
toires simples de fréquences entiérement déterminées ; dans un de ces
mouvements simples les trois coordonnées varient synchroniquement
(avec la fréquence, seuls les rapports mutuels des trois amplitudes dépen-
dent de la constitution du systéme; le reste, coefficient d’amplitude et
phase, dépendant des conditions initiales). La mise en évidence des trois
« fréquences fondamentales » est ici la clef du probléme. D’importantes
propriétés « extrémales » peuvent servir & les caractériser. Disons seule-
ment que la recherche des trois fréquences fondamentales d'un tel systéme
vibrant est & rapprocher de la recherche des axes d'un ellipsoide (1).
Et des résultats tout analogues peuvent étre immédiatement énoncés
pour un systéme matériel présentant un nombre quelconque n de degrés
de liberté.

C’est lorsqu’il ne suffit plus d’'un nombre fini de paramétres pour
caractériser le systéme matériel & étudier qu'un pas nouveau et décisif
doit étre franchi. Ce que nous continuerons & admettre, en revanche,
c’est le caractére linéaire de la relation entre « force » et « déplacement »,
impliqué dans les hypothéses faites plus haut. Ce caractére linéaire aura
un réle essentiel dans la suite.

Pour définir & un instant déterminé la position d’une corde vibrante
dans un plan, c¢’est toute une fonction d’une variable qu’il faut se donner.
Qu’il s’agisse de corde, de membrane, de tuyau d’orgue, ou de tout
autre systéme vibrant, ce sont des fonctions d’une ou de plusieurs
variables spatiales que I'on aura comme inconnues. Et on passera d'un
nombre fini & une suite infinie de fréquences fondamentales. ("est ce que
montre 'exemple célébre de la corde vibrante homogéne fixée & ses deux
extrémités (Daniel Bernoulli, 1741). Les fréquences fondamentales sont
les multiples successifs de 1'ane d’elles ; les sons correspondants sont les
« harmoniques » du premier. La superposition des solutions simples donne
la solution générale du probléme ; et ce fait peut étre considéré comme le
point de départ de toute la floraison de découvertes dont nous voulons
parler (Fourier, 1811). Supposons encore qu’il s’agisse simplement d’une
corde vibrante parfaite, mais n’admettons plus son homogénéité ; il va
falloir mettre en évidence ses modes de vibrations synchrones, ce que les

(1) Algébriquement, il s'agit toujours de la réduction simultande de deux formes gua-
dratiques données & des farmes « normales », ¢’est-i-dire dépourvues de « termes rectangles »,
les deux formes correspondant ici & I'énergie potentielle et & 1'énergie cinétique du systéme.
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physiciens appellent les partiels, et avant tout les fréquences de ces par-
tiels qui bien entendu ont souvent été confondus de prime abord avec les
harmoniques précédemment trouvés (1). Les lois classiques de la méca-
nique conduisent & exprimer qu'une certaine équation différentielle
linéaire (sans « second membre ») dépendant d’un paramétre 2 admet
une solution, non identiquement nulle, satisfaisant & certaines conditions
aux limites données. Un tel probléme n’est possible que si & a une des
valeurs d’une certaine suite infinie discréte, dépendant a la fois de I'équa-
tion et des conditions imposées ; ¢’est la connaissance de ces valeurs remar-
quables de A qui entraine immédiatement celle des fréquences fondamen-
tales. Qu’il s’agisse de vibrations mécaniques ou électromagnétiques, ou
qu’il s’agisse de bien d’antres problémes encore, c’est & des questions de
ce genre que s'est vue sans cesse ramenée la physique au cours du
XIX® siécle.

La démonstration mathématique de l’existence de la suite infinie
des « valeurs fondamentales » (« valeurs propres », ou « autovaleurs »), a
colité de longs efforts ; il suffit pour s’en rendre compte d’énumérer
quelques noms et quelques dates ; aprés les premiers essais de Sturm
et Liouville (1838), c’est Schwarz qui, en 1885, parvient & démontrer
P’existence de la premiére, Picard, en 1893, de la seconde, Poincaré, en
1894, de toutes. Il était réservé & Fredholm et & Hilbert de donner une
forme pour ainsi dire parfaite & toute la théorie en la dominant du point
de vue des « équations intégrales » La méthode générale pour la résolution
de telles équations avait été donnée dans un cas simple, en 1896, par
Volterra qui depuis plusieurs années employait systématiquement dans
ses recherches la méthode féconde de passage du fini & V'infini, du dis-
continu au continu (2).

Un probléme préliminaire se pose, que 'on peut schématiser ainsi :
la constitution d’un systéme matériel et les conditions aux limites étant
données, comment la connaissance, au total, des forces élastiques per-
met-elle de passer & celle des déplacements ? Avant tout, les forces ne
différant sensiblement de zéro que dans une petite région A, comment en
déduire les déplacements dans une autre région B ? C’est le « coefficient

(1) Dans Le Neveu de Rameau, de Diperor (1762), on lit ces lignes quelque peu mysté-
rieuses : « Pourvu que les cloches de sa paroisse continuent de résonner la douziéme et la
dix-geptiéme, tout sera bien. » Quelle est cette énigme ? Pourquoi ces nombres et non pas
d’autres ! Dans la gamme habituelle, les notes correspondant & des fréquences double,
triple, quadruple, quintuple de celle de la tonique (ou note de rang 1) ont pour rangs 8, 12
15, 17. &Amn t de cbté la huitidme et la guinziéme comme trop banales (octave et double
octave), le personnage en question songe naturellement & la douziéme et & la dix-septiéme.

(2) On trouverait déja des équations intégrales dans Laplace (1782) et dans Fourier.
Abel (1823) a traité une équation intégrale célébre. Liouville (1837) et Neumann (1870)
ont donné une solution par approximations successives. A propos des idées de Volterra, on
doit rappeler la méthode de Cauchy (publiée en 1844 et sqlgectionnée depuis par Lipschitz)
pour établir I'existence des solutions des équations différentielles ordinaires, méthode
dont Euler avait déja donné un apergu.
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d’influence » ou « fonction de Green » qui permet de répondre & la question ;
pour une répartition arbitrairement donnée des forces, il suffira de mul-
tiplier la « force » en A; par le coefficient d’influence correspondant a A;,
puis d’additionner tous les résultats obtenus pour avoir le « déplacement »
en B. De sorte que le probléme préliminaire est résolu par une « intégrale »
étendue & un champ déterminé portant sur un produit de deux fonetions
dont I'une, le coefficient d’'influence, contient le point B. Le coefficient
d’influence a une remarquable propriété de symétrie : il ne change pas (1)
quand on permute A et B.

Le probléme préliminaire de la recherche de la « fonction de Green »
étant supposé résolu, revenons a 1’'équation différentielle contenant le
parameétre A, dont il était question plus haut ; elle donnerait en somme,
en fonction de A et du « déplacement » I'expression de la force élastique
correspondant au cas de ces mouvements privilégiés que nous cherchons
& mettre en évidence. En utilisant cette expression méme dans I'intégrale
que l'on vient de définir, on obtiendra une équation ou la fonction
inconnue « déplacement » figurera linéairement, par sa valeur en B tout
d’abord, mais aussi sous le signe d’intégrale, par ses valeurs en tous les
points A; du domaine considéré. C'est I'équation intégrale linéaire « de
deuxiéme espéce », & limites fixes, & laquelle est désormais attaché le
nom de Fredholm. Equation « sans second membre » d’ailleurs, et &
« noyau symétrique » (2). Cette symétrie a une source algébrique évi-
dente ; I'étude d’une forme quadratique & n variables conduit tout natu-
rellement & lui attacher un tableau carré symétrique a n lignes et & n
colonnes. Hilbart (3) s’est proposé essentiellement de généraliser la théorie
des formes quadratiques au cas d'une infinité de variables, et il a obtenu
une moisson de résultats merveilleusement abondante. En méme temps,
Fredholm (4) donnait pour 1'équation -intégrale de deuxiéme espéce, &
limites fixes, & noyau symétrique ou non, avec ou sans second membre,
des théorémes définitifs. 1l fait quelques hypothéses générales de régula-
rité au sujet du « noyau »; mais peu importe maintenant qu’il se soit
agi d’une ou de plusieurs variables, que nous ayons eu affaire & une équa-
tion différentielle ordinaire ou & une équation aux dérivées partielles,

(7) Une illustration de ce fait est bien connue: pour une poutre maintenue horizentale-
ment comme on voudra, le fléchissement qui se produit en un point B lorsqu'un poids est
attaché en A est le méme que celui qui se produirait en A si le méme poids était attaché
en B.

(2) Le « noyau » d'une équation intégrale linéaire étant cette fonction donnée de deux
points qui caractérise essentiellercent ’équaticn, & la maniéie dont un certain tsbleau
de coefiicients, & double entrée, caractérise un systéne banal d’¢quaticrs algcbngues
linéaires. Le noyau est dit « symétrique » s'il dépend symétriquen.ent des deux points
considérés.

(3) HiLBERT : Grundziige einer allgemeinen Theorie der linearen Integralgleichungen
(1912 ; recueil de mémoires publiés de 1904 & 1910).

(4) FrepuOLM : Acta Mathematica (1903), exposé d'ensemble, un premier travail sur
le sujet ayant été publié dés 1900,
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peu importe 'origine (1), physique ou non, du probléme ; la méthode
de résolution est uniforme et les résultats généralisent directement ceux
de la théorie élémentaire des systémes d’équations linéaires. Deux cas
sont & distinguer : ou bien A n’annule pas une certaine fonction entiére
D (») dont Fredholm donne I'expression, et I'équation a une solution et
une seule ( fonction « méromorphe » de %) ; ou bien A annule D, et 'équa-
tion n’est possible que si le « second membre » satisfait 4 certaines condi-
tions linéaires, en nombre fini, aisées & former. Il peut arriver que D ()
n’ait aucun zéro. C’est une particularité remarquable des noyaux symé-
triques de donner toujours lieu & une valeur singuliére au moins ; les
valeurs singuliéres sont d’ailleurs alors toutes réelles ; et elles ne sont en
nombre fini que pour des noyaux de forme particuliére simple ; somme
d’un nombre fini de produits de fonctions de I'une ou de I'autre variable
(noyaux de Goursat) (2). La suite infinie des valeurs singuliéres de A
donne tout naturellement la suite des valeurs fondamentales rencontrées
dans les problémes physiques indiqués plus haut ; ce sont les « valeurs
propres » ou « auto valeurs » ou encore le « spectre » du noyau donné.
Pour chacune d’elles, I'équation sans second membre & un nombre fini
de solutions linéairement indépendantes ; la suite infinie des solutions
ainsi obtenues peut étre considérée comme une suite « orthogonale et
normale » ; toute fonction, satisfaisant seulement & certaines conditions
générales de régularité, est développable en série procédant suivant ces
fonctions ; c’est le théoréme de Hilbert-Schmidt qui contient comme cas
particulier le développement en série trigonométrique et ceux qui, plus
ou moins isolément, avaient été trouvés depuis la célebre découverte
de Fourier. Valeurs fondamentales et solutions correspondantes permettent
d’ailleurs de retrouver le noyau ; on obtient sous certaines hypothéses,
sa forme canonique, ou « décomposition spectrale » ; chaque terme de la
série infinie obtenue est le produit des valeurs prises par une fonction
fondamentale pour I'une ou pour 'autre variable, divisé par la valeur
fondamentale correspondante.

Mais les résultats les plus profonds de Hilbert concernent des cas ol
les théorémes de Fredholm seraient impuissants. Hilbert part de I’étude
d’un espace dont chaque point est défini par une suite infinie (3) de coor-
données telles que la somme de leurs carrés converge, et c’est le choix de
cette restriction qui lui permet de fonder toute la théorie (4). Les formes

(1) Le oglébre probléme sux limites relatif  I'équation de Laplace, appelé probléme de
Dirichlet, se trouve ramené & une équation de Fredholm par la simple recherche d’une
« double couche » répartie sur la frontiére donnée.

(2) Cas précisément fort important, car il permet grice & un passage a la limite (utili-
sation de la notion de famille de fonctions également continues) de retrouver tous les résul-
tats essentiels de la théorie (cf. Mémorial des Sciences Mathématiques (1941), fasc. 101 et
102).

(3) Le passage du fini & I'infini qu’utilisaient Volterra et Fredholm était en méme
temps un passage du discontinu au continu. Hilbert passe d’'une suste finie & une suite
infinie,

(4) Voir, & ce sujet, l'artvicle de M. DIEUDONNE, page 204. (Nowe de F. LL.)
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quadratiques & une infinité de variables pour lesquelles la somme des carrés
des coefficients converge (formes dites « complétement continues »)
peuvent se ramener & une forme canonique tout analogue & celle que I'on
rencontre pour un nombre fini de variables ; la somme d’un nombre fini
de termes est simplement remplacée par une série infinie, et 'application
aux équations intégrales donne la « décomposition spectrale » indiquée
plus haut. Les formes complétement continues sont « bornées » en ce
sens que les formes finies constituées par leurs premiers termes (formes
« tronquées ») restent inférieures en valeur absolue & un nombre fixe
indépendant du rang de la troncature, lorsque la somme des carrés des
coordonnées du point variable reste inférieure & I'unité, mais la réciproque
n’est pas vraie, et I'étude des formes bornées non complétement continues
conduit Hilbert & une forme canonique d’une espéce toute nouvelle ;
4 la série trouvée précédemment, il faut ajouter une intégrale (1); au
spectre ponctuel, un spectre continu (le spectre ponctuel pouvant d’ail-
leurs alors disparaitre complétement) (2). Ces belles découvertes éclairent
profondément la théorie des équations intégrales « singuliéres » ; et les
résultats connus antérieurement sur l'intégrale de Fourier illustrent &
leur tour cette théorie nouvelle. '

Revenons aux équations intégrales réguliéres (de Fredholm) et bor-
nons-nous encore aux noyaux symétriques. Les « valeurs fondamentales »
sont caractérisées par d’importantes propriétés extrémales qui appa-
raissaient déja dans I’étude des systémes vibrants les plus simples & plu-
sieurs degrés de liberté. Si & un tel systéme, par liaisons linéaires sura-
joutées, on n’'en laisse plus qu'un, le carré de sa fréquence se présente
comme le rapport de deux formes quadratiques dont les coefficients
proviennent respectivement, au dénominateur et au numérateur, de
I'expression générale des énergies cinétique et potentielle du systéme
donné. Les mouvements « fondamentaux » sont ceux qui rendent « sta-
tionnaire » une telle expression. Rayleigh, dans sa belle Theory of
Sound, avait considéré le rapport analogue pour le cas d’un systéme
continu tel qu'une corde vibrante. Hilbert et son école, Courant tout
particuliérement, ont montré comment ce fait et ses analogues permettent
de démontrer de la maniére la plus directe et la plus claire non seulement
I'existence des valeurs singuliéres des noyaux symétriques, mais aussi
leurs propriétés les plus importantes (3).

Ces propriétés mettent aisément en évidence des faits généraux aux
applications physiques nombreuses ; I'adjonction d’une contrainte, la
diminution des facteurs d’inertie, I'augmentation des facteurs de rigidité,

(1) Au sens de Stieltjes.
(2) Cette circonstance se présente par exemple pour la forme x, x, + z, 23 + 232, +..
}ionfi le sple)ctre est constitué par I'ensemble des valeurs réelles de » extérieures & 'intervalle
= 4 + .
93(3) CoURANT et HILBERT : Methoden der Mathematischen Physik. (17¢ éd. 1924, 2¢ éd.
1931).
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ne peuvent tout au plus qu’augmenter, mais jamais diminuer, les hau-
teurs des partiels successifs du systéme vibrant (1). Ces mémes propriétés
rmettent d’obtenir la loi de répartition asymptotique des valeurs fon-
mentales ; supposons une distribution homogeéne des facteurs de
« rigidité » et « d’inertie » ; ’expression du nombre de fréquences fonda-
mentales inférieures & une quantité donnée ne dépend pas, lorsque cette
quantité devient grande, de la forme du domaine considéré, elle dépend
seulement de son volume : résultat simple que Lorentz avait prévu a
propos de la théorie du rayonnement (2). Ce sont enfin ces propriétés
qui servent de fondement aux méthodes de calcul numérique que I'on
a développées pour la recherche des valeurs fondamentales (Ritz) (3),
et & celles qu'utilisent les ingénieurs dans les problémes que leur pose
effectivement 1'usage des matériaux (4).
Mais il est remarquable que ce soit tout a fait d’'un autre cété que
soient venues dans ces derniéres années les applications les plus éclatantes.
A I'époque méme des travaux de Volterra, de Fredholm et de Hilbert,
la physique marchait de découvertes en découvertes. Les lois de rayonne-
ment du « corps noir » conduisaient Planck & I'hypothése des quanta
d’énergie ; et cette hypothése entrainait peu de temps aprés, avec la
théorie des « photons » d’Einstein, une sorte de retour & la théorie cor-
pusculaire de la lumiére qu’avait proposée gutrefois Newton et que les
mémorables découvertes de Fresnel et de Maxwell avaient fait abandonner
au profit de la théorie ondulatoire. Poincaré a pu se demander un instant
si la physique allait devoir renoncer a utiliser les équations différentielles.
Pendant une vingtaine d’années, on a di, suivant les phénoménes expé-
rimentaux que l'on voulait expliquer, utiliser I'une ou l'autre des deux
théories, qui semblaient contradictoires. La lumiére semblait avoir une
nature double, complétement paradoxale. Pour résoudre ces difficultés,
presque simultanément, deux grandes conceptions différentes apparurent :
I'une brillamment révélée par Louis de Broglie (1924), considérablement
approfondie par Schrodinger (1926), trouve la solution en donnant & la
matiére elle-méme une double nature ondulatoire et corpusculaire ;
dans la simple étude du mouvement d’un point matériel, elle fait inter-
venir une équation aux dérivées partielles du genre de celle ol avait

(1) C'est ainsi que si I'on fixe un lpoint d’une corde vibrante, les fréquences dues au
vibrations « normales » de I'une ou de I'autre partie constituent au total une suite dont les
valeurs séparent celles de la suite primitive (Lord RavLries : Th. of Sound, tome 1, 92 a
2¢ éd. (1929), p. 22, et VAN DENX DUNGEN : Les problémes généraux de la technigue des vibra-
tions, 1928, p. 83.)

(2) LorENTZ : Physikalische Zeitschrift, 1910, p. 1248,

58) Ch. KrYLOFF : Les méthodes de solution approchée des problémes de la Physique

matigque.

(4) Ce n’est pas seulement & propos de phénoménes vibratoires que se posent des ques-
tions relevant des mémes théories ; tel est par exemple le probléme de ce qu'on appelle le
« lambement » d’une tige comprimée longitudinalement, soit immobile, soit, animée d’un
mouvement de rotation autour de son axe.
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conduit précédemment I'étude des cordes, membranes, ou autres systémes
vibrants complexes de la « vieille mécanique » ; et c¢’est la suite discon-
tinue (1) des « valeurs propres » correspondantes qui donne tout natu-
rellement la suite des niveaux d’énergie privilégiés que I'expérience avait
révélés dans I'atome (2). L’autre conception, due & Heisenberg (1925), est
en méme temps plus abstraite et plus proche de 'expérience ; elle cherche
a n’introduire dans les calculs que des grandeurs correspondant & une
mesure physique possible ; elle est ainsi conduite & étudier des tableaux
carrés infinis de nombres, des « matrices », & étudier au total des transfor-
mations linéaires dans I'espace de Hilbert. Et ici encore c’est un probléme
de « valeurs propres » qui se pose, valeurs propres qui déterminent les
niveaux énergétiques. Ces deux théories semblent au premier abord bien
différentes. En réalité elles sont équivalentes (Schrodinger, 1926). Et on
peut, avec von Neumann (3), voir la raison essentielle de cette équiva-
lence dans un fait remarquable (4) découvert en 1907 par F. Riesz :
I'identité abstraite de 1’espace de Hilbert et de celui des fonctions « de
carré sommable ». Il est intéressant d’observer que pour qu’un tel résultat
ait pu étre découvert, il fallait qu’ait été dégagée la notion d’intégrale
telle que Le e I'a donnée en 1902 (5)...

L’équation de Fredholm, et avec elle les équations intégrales linéaires
des diverses espéces, 'espace de Hilbert et d’autres espaces plus ou moins
analogues, ont fait depuis le début du siécle I'objet d’'un nombre de
travaux considérable, ol l'intégrale de Lebesgue est un outil d'usage
courant. Carleman (6) est allé trés avant dans I'étude des équations inté-
grales singuliéres ; von Neumann, partant d’'une définition axiomatique
de 'espace de Hilbert a obtenu une méthode intuitive qui conduit aisé-
ment & de nombreux résultats (7).

C’est de I'étude de la nature que sont issus les problémes qui ont
conduit les premiers aux équations intégrales ; I'étude de « I'acoustique »
et des « vibrations » a été un guide précieux.

Mais les mathématiciens ont & juste titre largement usé de leur
liberté pour accroitre et développer la théorie. Méthodes analytiques et
méthodes synthétiques, analogies algébriques et analogies géométriques
ont été utilisées tour & tour. Pendant ce temps, les expériences de plus

(1) Au spectre discontinu doit s'adjoindre dans des cas importants un spectre continu
(S:hrodinger), remarquable illustration des résultats généraux de Hilbert.

(2) Le simple probléme de « I'ogeillateur harmonique linéaire », par ol nous avons
commencé cette étude, conduit & considérer la suite infinje de fonctions orthogonales &
laquelle est attaché le nom d’Hermite.

(3) Von NEUMANN : Mathematische Grundlagen der Quantenmechanik, 1932,

(4) Signalé en méme temps, sous une forme un peu différente, par Fischer.

(5) Voir & ce sujet 'article de M. PERRIN sur LEBESGUE, ainsi que les passages corres-
pondants des articles de M. M. VALirOX et Desant1. (Note de F. LL.)

(6) CArLEMAN : Equations intégrales singuliéres  noyawu réel et symétrique, 1923.

(7) Méthode peut-étre moins puissante & I'heure actuelle que les méthodes analy-
tiques de Carleman. (Cf. JuLia : Introduction mathématique aux théories quantiques, 1936.)
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en plus nombreuses et de plus en plus fines des physiciens conduisaient &
une conception nouvelle qui s’est trouvée avoir juste & point dans la
théoric constituée son instrument essentiel. Les efforts de ceux qui
semblaient cultiver pour elle-méme la théorie des ensembles, comme les
efforts de ceux qui observaient et expérimentaient dans les laboratoires,
convergeaient obscurément vers une ceuvre commune. La théorie des
équations intégrales linéaires et celle de 1'espace de Hilbert se prolongent
actuellement dans des directions trés variées. A I’ « Analyse fonction-
nelle » (1), I'avenir réserve sans doute de riches développements ; il est
permis de penser qu’ils pourront naitre de cette vraie philosophie mathé-
matique (2) qui consiste surtout & « sentir profondément la relation intime
et continue de I'abstrait au concret ».

MAURICE JANET,
Professeur a la Sorbonne.

(1) Cf. VOLTERRA et PERES : Théorie générale des fonctionnelles, 1936.
(2) Léon BRUNSCHVICG : Les élapes de la philosophie mathématique.



