
from scipy.special import pro_cv, pro_cv_seq, pro_ang1, pro_rad1, pro_rad2
import numpy as np
from numpy import *

MAX = 500
NTRY = 500
KMAX = 500
def SWFevalue(m,n,sign,c,smax,eps):
 csq = sign*c*c
 c2D2 = 0.5*csq
 c4 = csq*csq
 nMm = n-m
 fm2M1 = 4*m*m- 1
 r1Start = 0 if nMm%2 == 0 else 1
 r = r1Start
 fr = r
 tmPr = 2*m+r
 mPr = m+r
 tmPtrM1 = 2*mPr-1
 for s in range(r1Start,(nMm+1)//2+1):
 B1[s] =
(fr+2)*(fr+1)*(tmPr+2)*(tmPr+1)*c4/((tmPtrM1+4)*(tmPtrM1+4)*(tmPtrM1+2)*(tmPtrM1
+6))
 G1[s] = mPr*(mPr+1)+c2D2*(1-fm2M1/(tmPtrM1*(tmPtrM1+4)))
 fr += 2
 tmPr += 2
 tmPtrM1 += 4
 mPr += 2
 r2Start = nMm+2*smax
 fr = r2Start
 tmPr = 2*m+r2Start
 mPr = m+r2Start
 tmPtrM1=2*mPr-1
 for s in range(1,smax+1):
 B2[s]= fr*(fr-1)*tmPr*(tmPr-1)*c4/(tmPtrM1*tmPtrM1*(tmPtrM1-
2)*(tmPtrM1+2))
 G2[s]= mPr*(mPr+1)+c2D2*(1-fm2M1/(tmPtrM1*(tmPtrM1+4)))
 fr -= 2
 tmPr -= 2
 tmPtrM1 -= 4
 mPr -= 2
 if n == 0:
 if abs(c) < 3:
 Lest = LPS(m,n,csq)
 else:
 Lest = LAS(m,n,sign,c)
 else:
 if abs(c) < 4:
 Lest = LPS(m,n,csq)
 else:
 Lest = LAS(m,n,sign,c)
 Lu = Lest+0.1
 Ld = Lest-0.1
 Uu = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Lu)
 Ud = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Ld)
 k = 1
 while Uu*Ud > 0:
 Lstep= Lu- Ld
 if abs(Uu) < abs(Ud):
 Lu += Lstep
 Uu = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Lu)
 else:
 Ld -= Lstep
 Ud = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Ld)

 if k > NTRY:
 print(f'\n SWFevalue bracket > {NTRY} tries : 0 returned')
 return(0)
 k = k+1
 Uu = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Lu)
 Umid = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Ld)
 if Uu < 0:
 dL = Ld-Lu
 Lrt = Lu
 else:
 dL = Lu-Ld
 Lrt = Ld
 k = 0
 while (abs(dL) >= eps) and (Umid != 0):
 dL *= 0.5
 Lmid = Lrt+dL
 Umid = U(B1, G1, B2, G2, m, n, r1Start, r2Start, smax, Lmid)
 if (Umid <= 0):
 Lrt = Lmid
 k = k+1
 if k > KMAX:
 print(f'\n > {KMAX} tries to bisect root')
 Umid = 0
 return(Lrt)

def LAS(m, n, sign, c):
 if sign > 0:
 q = 2*(n - m) + 1
 q2 = q*q
 q3 = q2*q
 q4 = q3*q
 q5 = q4*q
 q6 = q5*q
 fm = m
 m2 = fm*fm
 m4 = m2*m2
 m6 = m4*m2
 L0 = c*q+m2-(q2+5)/8
 L1 = -q*(q2+11-32*m2)/64
 L2 = -(5*(q4+26*q2+21)-384*m2*(q2+1))/1024
 L3 = -q*((33*q4+1594*q2+5621)/128-m2*(37*q2+167)+m4/8)/128
 L4 =
-((63*q6+4940*q4+43327*q2+22470)/65536-m2*(115*q4+1310*q2+735)/512+3*m4*(q2+1)/
8)
 L5 = -q*((527*q6+61529*q4+1043961*q2+2241599)/1048576-
m2*(5739*q4+127550*q2+298951)/32768+m4*(355*q2+1505)/512-m6/16)
 else:
 nMm = n-m
 if nMm % 2 == 0:
 nu = nMm/2
 q = n + 1
 else:
 nu = (nMm-1)/2
 q= n
 q2 = q*q
 q3 = q2*q
 q4 = q3*q
 q5 = q4*q
 q6 = q5*q
 fm = m
 m2 = fm*fm
 m4 = m2*m2
 m6 = m4*m2
 L0 = -c*c+2*c*(2*nu+fm+1)-2*nu*(nu+fm+1)-(fm + 1)

 L1 = -q*(q2+1- m2)/8
 L2 = -(5*q4+10*q2+1-2*m2*(3*q2+1)+m4)/64
 L3 = -q*(33*q4+114*q2+37-2*m2*(23*q2+25)+13*m4)/512
 L4 = -(63*q6+340*q4+239*q2+14-10*m2*(10*q4+23*q2+3)+m4*(39*q2-18)-
2*m6)/1024
 L5 = 0
 cR = 1/c
 LLAS = L0+(L1+(L2+(L3+(L4+L5*cR)*cR)*cR)*cR)*cR
 return(LLAS)

def LPS(m, n, csq):
Suite de puissances pour valeurs propres de fonctions d onde spheroidales
 L0=n*(n+1)
 tm = 2*m
 tn = 2*n
 tnM1 = tn-1
 tnM3 = tn-3
 tnM5 = tn-5
 tnM7 = tn-7
 tnP1 = tn+1
 tnP3 = tn+3
 tnP5 = tn+5
 tnP7 = tn+7
 tnP9 = tn+9
 nMm = n-m
 nMmM1 = nMm-1
 nMmM2 = nMm-2
 nMmM3 = nMm-3
 nMmP1 = nMm+1
 nMmP2 = nMm+2
 nMmP3 = nMm+3
 nMmP4 = nMm+4
 nPm = n+m
 nPmM1 = nPm-1
 nPmM2 = nPm-2
 nPmM3 = nPm-3
 nPmP1 = nPm+1
 nPmP2 = nPm+2
 nPmP3 = nPm+3
 nPmP4 = nPm+4
 L2 = 0.5*(1-((tm-1)*(tm+1))/(tnM1*tnP3))
 L4 = 0.5*(-nMmP1*nMmP2*nPmP1*nPmP2/(pow(tnP3,3)*tnP5)+nMmM1*nMm*nPmM1*nPm/
(tnM3*pow(tnM1,3)))/tnP1
 L6 = (tm*tm-1)*(nMmP1*nMmP2*nPmP1*nPmP2/(pow(tnP3,4)*tnP5*tnP7)-
nMmM1*nMm*nPmM1*nPm/(tnM5*tnM3*pow(tnM1,4)))/(tnM1*tnP1*tnP3)
 A = (nMmM1*nMm*nPmM1*nPm/(pow(tnM5,2)*tnM3*pow(tnM1,5))-
nMmP1*nMmP2*nPmP1*nPmP2/(pow(tnP3,5)*tnP5*tnP7*tnP7))/(tnM1*tnM1*tnP1*tnP3*tnP3)
 B =
(nMmM3*nMmM2*nMmM1*nMm*nPmM3*nPmM2*nPmM1*nPm/(tnM7*tnM5*tnM5*pow(tnM3,3)*pow(tnM
1,4))-nMmP1*nMmP2*nMmP3*nMmP4*nPmP1*nPmP2*nPmP3*nPmP4/
(pow(tnP3,4)*pow(tnP5,3)*tnP7*tnP7*tnP9))/tnP1
 C = (pow(nMmP1*nMmP2*nPmP1*nPmP2,2)/(pow(tnP3,7)*tnP5*tnP5)-
pow(nMmM1*nMm*nPmM1*nPm,2)/(tnM3*tnM3*pow(tnM1,7)))/(tnP1*tnP1)
 D =
nMmM1*nMm*nMmP1*nMmP2*nPmM1*nPm*nPmP1*nPmP2/(tnM3*pow(tnM1*tnP3,4)*tnP1*tnP1*tnP
5)
 L8 = 2*pow(tm*tm-1,2)*A+B/16+C/8+D/2
 LLPS = L0+(L2+(L4+(L6+L8*csq)*csq)*csq)*csq
 return(LLPS)

def U (B1, Gl, B2, G2, m, n, r1Start, r2Start, smax, LL):
Fraction continue avec suite U1 de valeurs propres de fonction d onde
spheroidale ; fini
 if n == m+r1Start:

 U1= G1[r1Start]-LL
 else:
 U1 = B1[r1Start]/(Gl[r1Start]-LL)
 sStop = (n-m-1)/2
 s = r1Start+1
 while s <= sStop:
 U1=B1[s]/(G1[s]-LL-U1)
 s = s+1
 U1 = G1[s]-LL-U1
 # suite U2 ; infinie, mais tronquee apres smax termes
 s = 1
 U2 = B2[1]/(G2[1]-LL)
 while s <= smax:
 U2 = B2[s]/(G2[s]-LL-U2)
 s = s+1
 return(U1-U2)

def SWFAngCoeff(m, n, sign, c, smax, TMNeps, dmn, tmn):
coefficients de fonction angulaire spherique, utilisant tmn (cf Little et
Corbato [Stra56]) avec iteration backward
 csq = sign*c*c
 # valeur propre modifiee
 tmn = SWFevalTMN(m,n,csq, smax, TMNeps);
 # construire un tableau de coefficients
 nMm = n-m
 rSt = 0 if nMm % 2 == 0 else 1
 rLarge = nMm+14;
 dmn[rLarge] = 1;
 for r in range(rrlarge, rSt+2, -2):
 if csq == 0:
 dmn[r] = 1 if r == nMm else 0
 else:
 dmn[r-2] = -bbtmn(m,n,r-nMm,csq, tmn)*dmn[r]/cc(m,r,csq) if
r==rLarge else
-(bbtmn(m,n,r-nMm,csq,tmn)*dmn[r]+aa(m,r,csq)*dmn[r+2])/cc(m,r,csq)
 # Normalisation selon le schema de Flammer (cf [Fla57])
 tm = m+m
 tmM1 = tm - 1
 fm = m
 fnPm = n + m
 fnMm = nMm
 trSt = 2*rSt
 frSt = rSt
 term = exp(LogGamma(tm+1+trSt)-LogGamma(fm+frSt+1))/pow(2,frSt)
 sum = term*dmn[rSt]
 for r in range(rSt+2, rLarge, 2):
 fr = r
 term *= -(fr+tmM1+frSt)/(fr-frst)
 sum += term*dmn[r]
 phase = 1 if (nMm-rSt) % 4 == 0 else -1
 Norm = phase*exp(LogGamma(fnPm+frSt+1)-LogGamma(0.5*(fnMm-frSt)+1)-
LogGamma(0.5*(fnPm+frSt)+1))/(pow(2,fnMm)*sum)
 for r in range(rrst,rLarge+1,2):
 dmn[r] *= Norm
 return()

def aa(m, r, csq):
terme alpha pour la recurrence des coeff des fonctions d onde spheroidale
 tmPrP1 = 2*m+r+1
 tmPtrP3 = 2*(m+r)+3
 return((tmPrP1+1)*tmPrP1*csq/(tmPtrP3*(tmPtrP3+2)))

def bbtmn(m, n, s, csq, tmn):
terme beta pour la recurrence des coeff de fonction d onde spheroidale ;

modifie pour la fonction auxiliaire tmn
 fm = m
 tn = 2*n
 ts = 2*s
 fs = s
 tnPts = tn+ts

return(fs*(tn+fs+1)*(1+csq*(2*(4*fm*fm-1)/((tn-1)*(tn+3)*(tnPts-1)*(tnPts+3))))-
csq*tmn)

def cc(m, r, csq):
terme gamma pour la recurrence des coeff de fonction d onde spheroidale
 fr = r
 tm = 2*m
 tmPtr = tm+2*fr
 return(fr*(fr-1)*csq/((tmPtr-3)*(tmPtr-1)))

def SWFevalTMN(m, n, csq, smax, TMNeps):
valeur propre de fonction d onde spheroidale sous forme tmn pour le degre n, l
ordre m, l argument csq : utilise smax termes dans la fraction continue et
obtient la valeur propre modifiee avec precision TMNeps
 if csq == 0:
 return(0)
 # construire les tableaux de termes dans les fractions continues qui sont
independantes de la valeur propre
 c2D2 = 0.5*csq
 tcsq = 2*csq
 c4 = csq*csq
 nMm = n-m
 fm2M1 = 4*m*m-1
 # Elements pour la fonction U1
 r1Start = 0 if nMm % 2==0 else 1
 r = r1Start
 fr = r
 tmPr = 2*m+r
 mPr= m+r
 tmPtrM1= 2*mPr-1
 tn = n+n
 tnM13 = (tn-1)*(tn+3)
 s = fr - nMm
 for t in range(r1Start,(nMm+1)//2+1):
 B1[t] =
(fr+2)*(fr+1)*(tmPr+2)*(tmPr+1)*c4/((tmPtrM1+4)*(tmPtrM1+4)*(tmPtrM1+2)*(tmPtrM1
+6))
 tnPtsMl = tn+2*s-1
 GTT1[t] = s*(tn+s+1)*(1+tcsq*fm2M1/(tnM13*tnPtsM1*(tnPtsM1+4)))
 fr += 2
 tmPr += 2
 tmPtrM1 += 4
 mPr += 2
 s += 2
 # Elements pour la fonction U2 ; r commence en n-m+2smax pour smax termes
 r2Start=nMm+2*smax
 fr = r2Start;
 tmPr = 2*m+r2Start
 mPr = m+r2Start
 tmPtrM1 = 2*mPr-1
 s= 2*smax
 for t in range(1, smax+1):
 B2[t] = fr*(fr-1)*tmPr*(tmPr-1)*c4/(tmPtrM1*tmPtrM1*(tmPtrM1-
2)*(tmPtrM1+2))
 tnPtsMl = tn+2*s-1
 GTT2[t] = s*(tn+s+1)(1+tcsq*fm2M1/(tnM13*tnPtsM1*(tnPtsM1+4)))
 fr -= 2

 tmPr -= 2
 tmPtrM1 -= 4
 mPr -= 2
 s -= 2;
 # valeur propre modifiee estimee multipliee par le carre de c
 cTMNest = -0.01*csq
 # encadrement de la valeur propre modifiee
 cTMNu = cTMNest*1.1
 cTMNd = cTMNest*0.9
 Uu = U(B1, GTT1, B2, GTT2, m, n, r1start, r2Start, smax, cTMNu)
 Ud = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNd)
 k= 1
 while Uu*Ud > 0:
 cTstep = cTMNu - cTMNd
 if abs (Uu) < abs (Ud):
 cTMNu += cTstep
 Uu = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNu)
 else:
 cTMND -= cTstep
 Ud = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNd)
 if k> NTRY:
 print(f'\n SWFevalTMN bracket > {NTRY} tries : 0 returned')
 return(0)
 k = k+1
 # Raffiner la racine a une precision fractionnaire de TMNeps par la
methode de bisection ; commencer en cTMNu et TMNd
 Uu = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNu)
 Umid = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNd);
 # trouver la direction telle que U>0 pour CTMNrt+dcTMN
 if Uu < 0:
 dcTMN = cTMNd - cTMNu
 cTMNrt = cTMNu
 else:
 dcTMN = cTMNu - cTMNd
 cTMNrt = cTMNd
 k = 0
 while (abs(dcTMN) >= TMNeps) and (Umid != 0):
 dcTMN *= 0.5;
 cTMNmid = cTMNrt+dcTMN
 Umid = U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMNmid)
 if Umid <= 0:
 cTMNrt = cTMNmid
 k = k+1
 if k > KMAX:
 print(f'\n > {KMAX} tries to bisect root')
 Umid = 0
 return(xTMNrt/csq)

def U(B1, GTT1, B2, GTT2, m, n, r1Start, r2Start, smax, cTMN):
fraction continue avec valeur propre de la fonction d onde spherique modifiee
TMN fois csq
 # suite U1 ; finie
 if n == m:
 U1 = GTT1[0]-cTMN
 else:
 if n == m+1:
 U1 = GTT1[1]-cTMN
 else:
 U1 = B1[r1Start]/(GTT1[r1Start]-cTMN)
 sStop = (n-m-1)/2
 s = r1Start+1
 while s <= sStop:
 U1 = B1[s]/(GTT1[s]-cTMN-U1)
 s = s+1

 U1 = GTT1[s]-cTMN-U1
 # suite U2, infinie, mais tronquee apres smax termes
 s = 1;
 U2 = B2[1]/(GTT2[1]-cTMN)
 while s <= smax:
 U2 = B2[s]/(GTT2[s]-cTMN-U2)
 s = s+1
 return(U1-U2)

def S1MN(m, n, eta, dmn, Seps):
 # fonction spheroidale angulaire du premier type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
 nMm = n-m
 rStart = 0 if nMm % 2 == 0 else 1
 rLarge = nMm+14 # domaine des coefficients environ 10**15
 sum = 0
 ratio = 10
 r = rStart
 while ratio > Seps:
 if r > rLarge:
 print(f'\n\n S1NM unconverged to {Seps:.6E} in {rLarge} terms')
 return(sum)
 term = dmn[r]*PNM(m+r,m,eta)
 sum += term
 ratio = abs(term/sum)
 r += 2
 return(sum)

def S2MN(m, n, eta, dmn, Seps):
fonction spheroidale angulaire du second type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
 nMm = n-m
 rStart = 0 if nMm % 2 == 0 else 1
 rLarge = nMm+14 # coefficient range about 10**15
 sum = 0
 ratio = 10
 r = rStart
 while ratio > Seps:
 if r > rLarge:
 print(f'\n\n S2NM unconverged to {Seps:.6} in {rLarge} terms')
 return(sum)
 term = dmn[r]*QNM(m+r,m,eta)
 sum += term
 ratio = abs(term/sum)
 r += 2
 return(sum)

B1 = np.zeros(1000)
B2 = np.zeros(1000)
G1 = np.zeros(1000)
G2 = np.zeros(1000)
dmn = np.zeros(1000)
GTT1 = np.zeros(1000)
GTT2 = np.zeros(1000)
signe = +1 # prolate
signe = -1 # oblate
c = (2**0.5)/2
nbtermesfraccontinue = 4
epsilon = 0.01
m = 0
print('signe = ',signe, ' c = ',c,' nb termes frac cont. =
',nbtermesfraccontinue,' epsilon = ',epsilon,' m = ',m)
for n in range(-11,11):
 res = SWFevalue(m,n,signe,c,nbtermesfraccontinue,epsilon)

 print('n = ',n,' --> ',res,' procv = ',pro_cv(0,n,c))

