from scipy.special import pro_cv, pro_cv_seq, pro_angl, pro_radl, pro_rad2
import numpy as np
from numpy import *

MAX = 500
NTRY = 500
KMAX = 500

def SWFevalue(m,n,sign,c,smax,eps):
csq = sigh*c*c
c2D2 = 0.5*csq
c4 = csg*csq
nMm = n-m
fm2M1 = 4*m*m- 1
riStart = 0 if nMm%2 == 0 else 1

r = riStart
fr =r

tmPr = 2*m+r
mPr = m+r

tmPtrM1 = 2*mPr-1
for s in range(riStart, (nMm+1)//2+1):
B1[s] =
(fr+2)*(fr+1)*(tmPr+2)* (tmPr+1)*c4/((tmPtrM1+4)* (tmPtrM1+4)* (tmPtrM1+2)*(tmPtrM1
+6))

G1l[s] = mPr*(mPr+1)+c2D2*(1-fm2M1/(tmPtrM1* (tmPtrMi+4)))
fr += 2

tmPr += 2

tmPtrM1 += 4

mPr += 2

r2Start = nMm+2*smax
fr = r2Start
tmPr = 2*m+r2Start
mPr = m+r2Start
tmPtrM1=2*mPr-1
for s in range(1, smax+1):
B2[s]= fr*(fr-1)*tmPr*(tmPr-1)*c4/(tmPtrM1*tmPtrM1* (tmPtrM1-
2)*(tmPtrM1+2))
G2[s]= mPr*(mPr+1)+c2D2* (1-fm2M1/(tmPtrM1* (tmPtrM1+4)))
fr -=
tmPr -= 2
tmPtrM1 -= 4
mPr -=
if n ==
if abs(c) < 3:
Lest = LPS(m,n,csq)
else:
Lest = LAS(m,n,sign,c)
else:
if abs(c) < 4:
Lest = LPS(m,n,csq)

else:
Lest = LAS(m,n,sign,c)
Lu = Lest+0.1
Ld = Lest-0.1
Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)
ud = u(B1, Gi, B2, G2, m, n, riStart, r2Start, smax, Ld)
k =1

while Uu*ud > 0:
Lstep= Lu- Ld
if abs(Uu) < abs(Ud):

Lu += Lstep

Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)
else:

Ld -= Lstep

ud = U(B1, Gi, B2, G2, m, n, riStart, r2Start, smax, Ld)



if k > NTRY:
print(f'\n SWFevalue bracket > {NTRY} tries : O returned')
return(0)
k = k+1
Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)
Umid = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Ld)

if Uu < 0:
dL = Ld-Lu
Lrt = Lu
else:
dL = Lu-Ld
Lrt = Ld
k =0
while (abs(dL) >= eps) and (Umid '= 0):
dL *= 0.5

Lmid = Lrt+dL
Umid = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lmid)
if (Umid <= 0):

Lrt = Lmid

k = k+1

if k > KMAX:
print(f'\n > {KMAX} tries to bisect root')
Umid = 0

return(Lrt)

def LAS(m, n, sign, c):
if sign > 0:
g=2*n-m) +1

d2 = g*q

g3 = g2*q

g4 = g3*q

a5 = g4*q

g6 = g5*q

fm=m

m2 = fm*fm

m4 = m2*m2

mé = m4*m2

LO = c*q+m2-(q2+5)/8

L1 = -g*(g2+11-32*m2)/64

L2 = -(5*(q4+26*q2+21)-384*m2* (q2+1))/1024
L3 = -q*((33*q4+1594*q2+5621)/128-m2*(37*q2+167)+m4/8)/128
L4 =

-((63*(q6+4940*q4+43327*q2+22470)/65536-m2* (115*q4+1310*q2+735)/512+3*m4* (q2+1)/
8)

L5 = -q*((527*q6+61529*q4+1043961*q2+2241599)/1048576-
m2* (5739*q4+127550*2+298951)/32768+m4* (355*q2+1505)/512-m6/16)

else:

nMm = n-m

if nMm % 2 ==
nu = nMm/2
g=n+1

else:
nu = (nMm-1)/2
q=n

g2 = g*q

g3 = g2*q

q4 = g3*q

a5 = g4*q

g6 = g5*q

fm =m

m2 = fm*fm

m4 = m2*m2

mé = m4*m2

LO = -c*c+2*c*(2*nu+fm+1)-2*nu* (nu+fm+1)-(fm + 1)



L1 = -g*(g2+1- m2)/8
L2 = -(5*q4+10*q2+1-2*m2*(3*q2+1)+m4)/64
L3 = -q*(33*q4+114*q2+37-2*m2* (23*q2+25)+13*m4) /512
L4 = -(63*q6+340*q4+239*q2+14-10*m2* (10*q4+23*q2+3)+m4* (39*q2-18) -
2*m6) /1024
L5 = 0
CR = 1/c
LLAS = LO+(L1+(L2+(L3+(L4+L5*CR)*CR)*CR)*CR)*CcR
return(LLAS)

def LPS(m, n, csq):
# Suite de puissances pour valeurs propres de fonctions d onde spheroidales

LO=n*(n+1)

tm = 2*m

tn = 2*n

tnM1 = tn-1
tnM3 = tn-3
tnM5 = tn-5
tnM7 = tn-7
tnP1 = tn+l
tnP3 = tn+3
tnP5 = tn+5
tnP7 = tn+7
tnP9 = tn+9
nMm = n-m
nMMM1 = nMm-1
nMmM2 = nMm-2
nMmMM3 = nMm-3
nMmP1 = nMm+1
nMmP2 = nMm+2
nMmMP3 = nMm+3
nMmP4 = nMm+4
nPm = n+m
nPmM1 = nPm-1
nPmM2 = nPm-2
nPmM3 = nPm-3
nPmP1 = nPm+1
nPmP2 = nPm+2
nPmP3 = nPm+3
nPmP4 = nPm+4

L2 = 0.5*(1-((tm-1)*(tm+1))/(tnM1*tnP3))

L4 = 0.5*(-nMmP1*nMmP2*nPmP1*nPmP2/ (pow(tnP3,3)*tnP5)+nMmMM1*nMm*nPmM1*nPm/
(tnM3*pow(tnM1,3)))/tnP1

L6 = (tm*tm-1)*(nMmMP1*nMmP2*nPmP1*nPmP2/ (pow(tnP3,4)*tnP5*tnP7) -
NMmMM1*nMm*nPmM1*nPm/ (tnM5*tnM3*pow(tnM1,4)))/(tnM1*tnP1*tnP3)

A = (NnMmM1*nMm*nPmM1*nPm/(pow(tnM5,2)*tnM3*pow(tnM1,5))-
NMMP1*nNMmP2*nPmP1*nPmP2/ (pow(tnP3,5)*tnP5*tnP7*tnP7))/(tnM1*tnM1*tnP1*tnP3*tnP3)

B =
(NMMM3*NMMM2 * NnMMM1*NMmM*NPMM3*nPmM2*nPmM1*nPm/ (tnM7*tnM5* tnM5*pow(tnM3, 3) *pow(tnM
1,4))-nMmP1*nMmMP2*nMmP3*nMmP4*nPmP1*nPmP2*nPmP3*nPmP4/
(pow(tnP3,4)*pow(tnP5,3)*tnP7*tnP7*tnP9))/tnP1

C = (pow(nMmP1*nMmMP2*nPmP1*nPmP2,2)/(pow(tnP3,7)*tnP5*tnP5) -
pow(NMMM1*nMm*nPmM1*nPm, 2)/(tnM3*tnM3*pow(tnM1,7)))/(tnP1*tnP1)

D =
NMMM1*nNMm*NMMP1*NMmP2*nPmM1*nPm*nPmP1*nPmP2/ (tnM3*pow(tnM1*tnP3, 4)*tnP1*tnP1*tnP
5)

L8 = 2*pow(tm*tm-1,2)*A+B/16+C/8+D/2

LLPS = LO+(L2+(L4+(L6+L8*Ccsqg)*csqg)*csq)*csq

return(LLPS)

def U (B1, G1l, B2, G2, m, n, riStart, r2Start, smax, LL):
# Fraction continue avec suite Ul de valeurs propres de fonction d onde
spheroidale ; fini

if n == m+riStart:



Ul= Gi[riStart]-LL
else:
Ul = Bil[riStart]/(Gl[riStart]-LL)
sStop = (n-m-1)/2
S = rilStart+1
while s <= sStop:
U1=B1[s]/(G1[s]-LL-U1)
s = s+l
Ul = G1[s]-LL-U1
# suite U2 ; infinie, mais tronquee apres smax termes
s =1
U2 = B2[1]/(G2[1]-LL)
while s <= smax:
U2 = B2[s]/(G2[s]-LL-U2)
s = s+l
return(Ui-u2)

def SWFAngCoeff(m, n, sign, c, smax, TMNeps, dmn, tmn):
# coefficients de fonction angulaire spherique, utilisant tmn (cf Little et
Corbato [Strab56]) avec iteration backward

csqg = sign*c*c

# valeur propre modifiee

tmn = SWFevalTMN(m,n,csq, smax, TMNeps);

# construire un tableau de coefficients

nMm = n-m

rst = 0 if nMm % 2 == 0 else 1

rLarge = nMm+14;

dmn[rLarge] = 1;

for r in range(rrlarge, rSt+2, -2):

if csq ==
dmn[r] = 1 if r == nMm else 0
else:
dmn[r-2] = -bbtmn(m,n,r-nMm,csq, tmn)*dmn[r]/cc(m,r,csq) if

r==rLarge else
-(bbtmn(m,n, r-nMm, csq, tmn)*dmn[r]+aa(m,r,csq)*dmn[r+2])/cc(m,r,csq)
# Normalisation selon le schema de Flammer (cf [Fla57])

tm = m+m

tmM1 = tm - 1

fm=m

fnPm = n +m

fnMm = nMm

trst = 2*rst

frst = rst

term = exp(LogGamma(tm+1+trSt)-LogGamma(fm+frSt+1))/pow(2, frSt)

sum = term*dmn[rSt]
for r in range(rSt+2, rlLarge, 2):

fr =r

term *= -(fr+tmM1+frSt)/(fr-frst)

sum += term*dmn[r]
phase = 1 if (nMm-rSt) % 4 == 0 else -1
Norm = phase*exp(LogGamma(fnPm+frSt+1)-LogGamma(0Q.5*(fnMm-frSt)+1)-

LogGamma(0.5* (fnPm+frSt)+1))/(pow(2, fnMm)*sum)

for r in range(rrst,rLarge+1,2):

dmn[r] *= Norm
return()

def aa(m, r, csq):

# terme alpha pour la recurrence des coeff des fonctions d onde spheroidale
tmPrP1 = 2*m+r+1
tmPtrP3 = 2*(m+r)+3
return( (tmPrP1+1)*tmPrP1*csq/(tmPtrP3* (tmPtrP3+2)))

def bbtmn(m, n, s, csq, tmn):
# terme beta pour la recurrence des coeff de fonction d onde spheroidale ;



modifie pour la fonction auxiliaire tmn

fm =m
tn = 2*n
ts = 2*s
fs = s

tnPts = tn+ts

return(fs*(tn+fs+1)*(1+csq*(2*(4*fm*fm-1)/((tn-1)*(tn+3)*(tnPts-1)*(tnPts+3))))-
csqg*tmn)

def cc(m, r, csq):
# terme gamma pour la recurrence des coeff de fonction d onde spheroidale
fr=r
tm = 2*m
tmPtr = tm+2*fr
return(fr*(fr-1)*csq/((tmPtr-3)*(tmPtr-1)))

def SWFevalTMN(m, n, csq, smax, TMNeps):
# valeur propre de fonction d onde spheroidale sous forme tmn pour le degre n, 1
ordre m, 1 argument csq : utilise smax termes dans la fraction continue et
obtient la valeur propre modifiee avec precision TMNeps

if csq ==

return(0)

# construire les tableaux de termes dans les fractions continues qui sont
independantes de la valeur propre

c2D2 = 0.5*csq

tcsqg = 2*csq

c4 = csg*csq

nMm = n-m

fm2M1 = 4*m*m-1

# Elements pour la fonction U1

riStart = @ if nMm % 2==0 else 1

r = riStart

fr =r

tmPr = 2*m+r
mPr= m+r
tmPtrM1= 2*mPr-1
tn = n+n

tnM13 = (tn-1)*(tn+3)

s = fr - nMm

for t in range(riStart, (nMm+1)//2+1):
Bi[t] =

(fr+2)*(fr+1)*(tmPr+2)* (tmPr+1)*c4/((tmPtrM1i+4)* (tmPtrM1+4)* (tmPtrM1+2)* (tmPtrM1
+6))

tnPtsMl
GTT1[t]
fr += 2
tmPr +=
tmPtrM1 += 4
mPr += 2
S += 2

# Elements pour la fonction U2 ; r commence en n-m+2smax pour smax termes

r2Start=nMm+2*smax

fr = r2Start;

tmPr = 2*m+r2Start

mPr = m+r2Start

tmPtrM1 = 2*mPr-1

s= 2*smax

for t in range(1, smax+1):
B2[t] = fr*(fr-1)*tmPr*(tmPr-1)*c4/(tmPtrM1*tmPtrM1* (tmPtrM1-

tn+2*s-1
s*(tn+s+1)*(1+tcsq*fm2M1/ (tnM13*tnPtsM1* (tnPtsM1+4)))

N

2)*(tmPtrM1+2))
tnPtsMl = tn+2*s-1
GTT2[t] = s*(tn+s+1)(1+tcsq*fm2M1/(tnM13*tnPtsM1* (tnPtsM1+4)))

fr -= 2



tmPr -= 2
tmPtrM1 -= 4
mPr -=
s -= 2;
# valeur propre modifiee estimee multipliee par le carre de c
CTMNest = -0.01*csq
# encadrement de la valeur propre modifiee
CTMNu = cTMNest*1.1
CTMNd = cTMNest*0.9
Uu = U(B1, GTT1, B2, GTT2, m, n, rilstart, r2Start, smax, CcTMNu)
ud = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNd)
k=1
while Uu*ud > 0:
cTstep = cTMNu - cTMNd
if abs (Uu) < abs (ud):
CTMNu += cTstep
Uu = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CTMNu)
else:
CTMND -= cTstep
ud = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNd)

if k> NTRY:
print(f'\n SwWFevalTMN bracket > {NTRY} tries : O returned')
return(0)

k = k+1

# Raffiner la racine a une precision fractionnaire de TMNeps par la
methode de bisection ; commencer en cTMNu et TMNd
Uu = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNu)
Umid = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CcTMNd);
# trouver la direction telle que U>0 pour CTMNrt+dcTMN
if Uu < 0:
dcTMN = cTMNd - CTMNu
CTMNrt = cTMNu
else:
dcTMN = cTMNu - cTMNd
CTMNrt = cTMNd
k =0
while (abs(dcTMN) >= TMNeps) and (Umid !'= 0):
dcTMN *= 0.5;
CTMNmid = cTMNrt+dcTMN
Umid = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNmid)
if Umid <= 0:
CTMNrt = cTMNmid
k = k+1
if k > KMAX:
print(f'\n > {KMAX} tries to bisect root')
Umid = 0
return(xTMNrt/csq)

def U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CTMN):
# fraction continue avec valeur propre de la fonction d onde spherique modifiee
TMN fois csq

# suite U1l ; finie

if n == m:
Ul = GTT1[O]-CcTMN
else:
if n == m+1:
Ul = GTT1[1]-CTMN
else:

Ul = Bi[riStart]/(GTTi[riStart]-cTMN)
sStop = (n-m-1)/2
S = rilStart+1
while s <= sStop:
Ul = B1[s]/(GTT1[s]-cTMN-U1)
s = s+1



Ul = GTT1[s]-cTMN-U1

# suite U2, infinie, mais tronquee apres smax termes
s =1,
U2 = B2[1]/(GTT2[1]-cTMN)
while s <= smax:

U2 = B2[s]/(GTT2[s]-cTMN-U2)

s = s+1
return(Ul-u2)

def S1IMN(m, n, eta, dmn, Seps):
# fonction spheroidale angulaire du premier type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
nMm = n-m
rStart = @ if nMm % 2 == 0 else 1
rLarge = nMm+14 # domaine des coefficients environ 10**15
sum = 0
ratio = 10
r = rStart
while ratio > Seps:
if r > rLarge:
print(f'\n\n S1NM unconverged to {Seps:.6E} in {rlLarge} terms')
return(sum)
term = dmn[r]*PNM(m+r,m, eta)
sum += term
ratio = abs(term/sum)
r += 2
return(sum)

def S2MN(m, n, eta, dmn, Seps):
# fonction spheroidale angulaire du second type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
nMm = n-m
rStart = 0 if nMm % 2 == 0 else 1
rLarge = nMm+14 # coefficient range about 10**15
sum = 0
ratio = 10
r = rStart
while ratio > Seps:
if r > rlLarge:
print(f'\n\n S2NM unconverged to {Seps:.6} in {rLarge} terms')
return(sum)
term = dmn[r]*QNM(m+r,m,eta)
sum += term
ratio = abs(term/sum)

ro+= 2
return(sum)

B1 = np.zeros(1000)

B2 = np.zeros(1000)

Gl = np.zeros(1000)

G2 = np.zeros(1000)

dmn = np.zeros(1000)
GTT1 = np.zeros(1000)
GTT2 = np.zeros(10600)
signe = +1 # prolate

# signe = -1 # oblate

c = (2**0.5)/2
nbtermesfraccontinue = 4
epsilon = 0.01

m=20
print('signe = ',signe, ' ¢ = ',c,' nb termes frac cont. =
',nbtermesfraccontinue,' epsilon = ',epsilon,' m = ', m)

for n in range(-11,11):
res = SWFevalue(m,n,signe,c,nbtermesfraccontinue, epsilon)



print('n = "',n,' --> ', res,' procv = ',pro_cv(0,n,c))



