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Cet essai sur la nature de la preuve et du progrés en mathématiques a été inspiré par 'article
de Jaffe et Quinn, “Theoretical Mathematics : Toward a cultural synthesis of mathematics and
theoretical physics” (“Mathématiques théoriques : vers une synthése culturelle des mathématiques
et de la physique théorique”). Leur article souléve des questions intéressantes auxquelles les ma-
thématiciens devraient accorder plus d’attention, mais il perpétue également certaines croyances et
attitudes largement répandues qui doivent étre remises en question et examinées.

L’article contenait un paragraphe décrivant une partie de mon travail d’une maniére qui différe de
mon expérience, et qui différe également des observations des personnes du secteur avec lesquelles
j'en ai discuté pour vérifier la réalité.

Apres réflexion, il m’a semblé que les écrits de Jaffe et Quinn illustraient le phénoméne selon lequel
on voit ce que 1'on est enclin & voir. Leur interprétation de mon travail résultait d’une projection
de la sociologie des mathématiques sur une échelle unidimensionnelle (spéculation contre rigueur)
qui ignore de nombreux phénomeénes fondamentaux.

Des réactions a 'article de Jaffe et Quinn ont été sollicitées auprés de plusieurs mathématiciens, et
je m’attends a ce qu’il suscite de nombreuses analyses et critiques spécifiques. C’est pourquoi, dans
cet essai, je privilégierai les aspects positifs plutot que les aspects négatifs. Je décrirai ma concep-
tion du processus mathématique, en ne faisant référence qu’occasionnellement & Jaffe et Quinn a
titre de comparaison.

Pour tenter de déconstruire les présupposés, il est important de commencer par les bonnes ques-
tions :

1. Qu’accomplissent les mathématiciens ?

Cette question recéle de nombreux problémes que j’ai essayé de formuler de maniére & ne pas pré-
supposer la nature de la réponse.

Il ne serait pas judicieux de commencer, par exemple, par la question
Comment les mathématiciens démontrent-ils les théorémes ?

Cette question souléve un sujet intéressant, mais commencer par la reviendrait a projeter deux
hypothéses implicites :
1. qu’il existe une théorie et une pratique mathématiques uniformes, objectives et solidement
établies de la preuve, et
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2. que les progrés réalisés par les mathématiciens consistent & démontrer des théorémes.

Il est judicieux d’examiner ces hypothéses plutot que de les accepter comme évidentes et de partir
de la.

La question n’est méme pas
Comment les mathématiciens progressent-ils en mathématiques ?
En fait, pour formuler la question de maniére plus explicite (et orientée), je préfére :
Comment les mathématiciens font-ils progresser la compréhension humaine des mathématiques ?

Cette question met en lumiére un point fondamental et omniprésent qui est que ce que nous faisons,
c’est trouver des moyens pour que les gens comprennent et réfléchissent aux mathématiques.

Le développement rapide de 'informatique a contribué a mettre en évidence ce point, car les ordi-
nateurs et les étres humains sont tres différents. Par exemple, lorsque Appel et Haken ont achevé
une démonstration du théoréme du coloriage d’une carte par 4 couleurs a ’aide d’un calcul massif
automatique, cela a suscité une vive controverse. J'interpréte cette controverse comme ayant peu
a voir avec les doutes que 'on pouvait avoir quant & la véracité du théoréme ou a la validité de la
démonstration. Elle reflétait plutdét un désir persistant de compréhension humaine de la démons-
tration, au-dela de la simple connaissance de la vérité du théoréme.

Au niveau plus quotidien, il est courant que les personnes qui commencent & utiliser des ordinateurs
effectuent des calculs & grande échelle pour des choses qu’elles auraient pu faire manuellement a
plus petite échelle. Ces personnes pourraient imprimer un tableau des 10 000 premiers nombres
premiers, pour finalement se rendre compte que ce résultat ne correspond pas a leurs attentes. Ce
genre d’expérience leur fait réaliser que ce qu’elles désirent vraiment, ce n’est généralement pas un
ensemble de réponses, mais plutot comprendre les phénoménes.

Il peut sembler presque circulaire d’affirmer que les mathématiciens font progresser la compréhen-
sion humaine des mathématiques. Je ne tenterai pas de résoudre ce probléme en discutant de ce que
sont les mathématiques, car cela nous ménerait trés loin. Les mathématiciens ont généralement le
sentiment de savoir ce que sont les mathématiques, mais peinent & en donner une définition directe
et satisfaisante. Il est intéressant d’essayer. Pour moi, la théorie des motifs formels est ce qui s’en
rapproche le plus, mais I'aborder en détail nécessiterait un essai entier.

La difficulté qu’on a & donner une bonne définition directe des mathématiques pourrait-elle étre es-
sentielle, indiquant que les mathématiques ont une qualité récursive essentielle 7 Dans cette optique,
on pourrait dire que les mathématiques sont le plus petit sujet satisfaisant ce qui suit :

- Les mathématiques comprennent les nombres naturels et la géométrie plane et solide.

- Les mathématiques sont ce que les mathématiciens étudient.



- Les mathématiciens sont les étres humains qui font progresser la compréhension humaine des
mathématiques.

Autrement dit, & mesure que les mathématiques progressent, nous les intégrons a notre facon de
penser. A mesure que notre pensée se sophistique, nous générons de nouveaux concepts et de nou-
velles structures mathématiques : 'objet des mathématiques évolue pour refléter notre fagon de
penser.

Si notre démarche consiste a construire de meilleures facons de penser, alors les dimensions psy-
chologiques et sociales sont essentielles & un bon modéle de progrés mathématique. Ces dimensions
sont absentes du modéle dominant. En résumé, le modéle dominant soutient que...

D. Les mathématiciens partent de quelques structures mathématiques de base et d'un ensemble
d’axiomes donné a propos de ces structures, que

T. Il existe diverses questions importantes auxquelles il faut répondre concernant ces structures
qui peuvent étre énoncées sous forme de propositions mathématiques formelles, et

P. La tache du mathématicien est de rechercher un cheminement déductif des axiomes & ’asser-
tion de propositions ou a leur démenti.

On pourrait appeler cela le modeéle définition-théoréme-preuve (DTP) des mathématiques.

Une difficulté majeure du modeéle DTP réside dans son incapacité a expliquer l'origine des questions.
Jaffe et Quinn évoquent la spéculation (qu’ils qualifient, a tort, de “mathématiques théoriques”)
comme un élément supplémentaire important. La spéculation consiste & formuler des conjectures,
a soulever des questions et a élaborer des hypothéses et des raisonnements heuristiques pertinents
sur ce qui est probablement vrai.

Le modéle DTP de Jaffe et Quinn ne parvient toujours pas a résoudre certains problémes fonda-
mentaux. Nous ne cherchons pas & atteindre un quota de production de définitions abstraites, de
théorémes et de démonstrations. Notre succes se mesure a notre capacité & permettre aux gens de
comprendre et de penser plus clairement et plus efficacement aux mathématiques.

Nous devons donc nous poser la question suivante :
2. Comment les gens comprennent-ils les mathématiques ?

C’est une question trés difficile. La compréhension est une affaire individuelle et intérieure, difficile
a appréhender pleinement, a comprendre et souvent & communiquer. Nous ne pouvons ici qu’effleu-
rer le sujet.

Les individus ont des maniéres trés différentes d’appréhender certains concepts mathématiques.
Pour illustrer cela, prenons un exemple que les mathématiciens praticiens comprennent de multiples
facons, mais qui pose souvent probléme a nos éléves : la dérivée d’une fonction. On peut la concevoir
comme :

1. Infinitésimale : le rapport de la variation infinitésimale de la valeur d’une fonction appliquée
a une entrée a la variation infinitésimale de cette entrée.



2. Symbolique : la dérivée de 2™ est nz™ 1, la dérivée de sin x est cos x, la dérivée de f o g est
flogxd, etc.
3. Logique : f'(x) = d si et seulement si pour tout ¢, il existe un § tel que lorsque 0 < |Az| < 9,

[z + Ax) — f(2)

AL —d| <.

4. Géométrique : la dérivée est la pente d’une droite tangente au graphique de la fonction, si le
graphique posséde une tangente.

5. Taux : la vitesse instantanée de f(t), lorsque ¢ est le temps.

6. Approximation : La dérivée d’une fonction est la meilleure approximation linéaire de cette
fonction prés d’un point.

7. Microscopique : La dérivée d’une fonction est la limite de ce que I'on obtient en 1’observant
sous un microscope de puissance de plus en plus élevée.

Il s’agit d’une liste de différentes maniéres d’envisager ou de concevoir la dérivée, plutot que d’une
liste de différentes définitions logiques. A moins de déployer des efforts considérables pour préserver
le ton et la saveur des intuitions humaines originales, les différences commencent a s’estomper dés
que les concepts mentaux sont traduits en définitions précises, formelles et explicites.

Je me souviens avoir assimilé chacun de ces concepts comme quelque chose de nouveau et d’intéres-
sant, et avoir consacré beaucoup de temps et d’efforts a les comprendre et & les mettre en pratique,
en les reliant aux autres. Je me souviens aussi d’étre revenu plus tard a ces différents concepts,
enrichis d’'une compréhension plus profonde.

La liste continue; il n’y a aucune raison qu’elle s’arréte un jour. Un exemple plus bas dans la liste
peut aider & illustrer ce point. On peut croire tout savoir sur un sujet donné, mais de nouvelles
perspectives sont toujours a portée de main. De plus, ce qui est clair pour I'un peut étre intimidant
pour l'autre :

37. La dérivée d’une fonction réelle f sur un domaine D est la section du Lagrangien du fibré
cotangent 7*(D) qui donne la forme de connexion pour I"'unique connexion plate sur le R-fibré
trivial D x R pour laquelle le graphe de f est paralléele.

Ces différences ne sont pas qu’une simple curiosité. La pensée et la compréhension humaines ne
fonctionnent pas de maniére linéaire, comme un ordinateur doté d’une seule unité centrale de trai-
tement. Notre cerveau et notre esprit semblent organisés en une multitude de structures distinctes
et puissantes Ces structures collaborent de maniére souple, “communiquant” entre elles & des ni-
veaux élevés plutdot qu’a des niveaux d’organisation inférieurs. Voici quelques grandes divisions
importantes pour la pensée mathématique :

1. Le langage humain. Nous possédons des capacités spécialisées et performantes pour parler et
comprendre le langage humain, qui sont également liées a la lecture et a I’écriture. Notre ap-
titude linguistique est un outil essentiel pour penser, et pas seulement pour communiquer. Un
exemple simple est la formule du second degré, que 'on retient peut-étre comme une petite
comptine : “x est égal & moins b plus ou moins racine carrée de b carré moins 4ac tout ¢a sur
2a”. Le langage mathématique des symboles est trés lié & notre capacité langagiére humaine
L’ensemble des symboles mathématiques dont disposent la plupart des étudiants en calcul

4



différentiel et intégral ne comporte qu'un seul verbe, “=". C’est pourquoi les étudiants 1'uti-
lisent lorsqu’ils ont besoin d’un verbe. Presque tous ceux qui ont enseigné le calcul différentiel
et intégral aux Etats-Unis ont vu des étudiants écrire instinctivement 2% = 322.

La vision, au sens spatial ou au sens kinesthésique (du mouvement). Les étres humains pos-
sedent des capacités trés développées pour recevoir des informations visuellement ou kines-
thésiquement, et pour penser grace a leur sens spatial. En revanche, ils ne possédent pas
une grande aptitude innée a la vision inverse, c¢’est-a-dire a transformer une compréhension
spatiale interne en une image bidimensionnelle. Par conséquent, les mathématiciens ont géné-
ralement moins de figures, et de moindre qualité, dans leurs articles et leurs livres que dans
leurs mémoires.

Un phénomeéne intéressant dans la pensée spatiale est I'importance de ’échelle. On peut pen-
ser a de petits objets que l'on tient dans ses mains, & des structures plus grandes, a taille
humaine, que 'on scrute du regard, ou encore a des structures spatiales qui nous entourent
et dans lesquelles on se déplace. Nous avons tendance a penser plus efficacement avec des
images spatiales a plus grande échelle : ¢’est comme si notre cerveau prenait les choses plus
grandes plus au sérieux et pouvait leur consacrer plus de ressources.

Logique et déduction. Nous possédons des modes de raisonnement et d’association innés qui
nous permettent d’effectuer des déductions logiques : cause et effet (liés a l'implication),
contradiction ou négation, etc.

Il semble que les mathématiciens ne s’appuient généralement pas sur les régles formelles de
la déduction lorsqu’ils raisonnent. Ils conservent plutét en mémoire une bonne partie de la
structure logique d’une démonstration, la décomposant en résultats intermédiaires afin de ne
pas avoir a gérer une trop grande quantité de logique simultanément. En fait, il est fréquent
que d’excellents mathématiciens ignorent méme 'usage formel standard des quantificateurs
(pour tout et il existe). et pourtant, tous les mathématiciens effectuent assurément le raison-
nement qu’ils impliquent.

Il est intéressant de constater que, bien que “ou”, “et” et “implique” aient un usage formel
identique, nous considérons “ou” et “et” comme des conjonctions et “implique” comme un
verbe.

Intuition, association, métaphore. Les étres humains possédent une capacité étonnante a per-
cevoir quelque chose sans savoir d’ou cela vient (intuition); & sentir qu'un phénoméne, une
situation ou un objet ressemble & autre chose (association); et & construire et tester des
liens et des comparaisons, en gardant deux choses a 'esprit simultanément (métaphore). Ces
compétences sont trés importantes pour les mathématiques. Personnellement, je m’efforce d’
écouter mes intuitions et mes associations d’idées, et de les transformer en métaphores et en
liens. Cela implique une sorte de calme et de concentration simultanés de mon esprit. Les
mots, la logique et les images détaillées qui s’entrechoquent peuvent inhiber les intuitions et
les associations d’idées.

Réponse au stimulus. Ce principe est souvent mis en avant dans les écoles par exemple, si
vous voyez 3927 x 253, Vous écrivez un nombre au-dessus de 'autre et tracez une ligne en
dessous, etc. Ceci est également important pour les mathématiques de recherche en voyant
le diagramme d’un nceud, je pourrais rédiger une présentation du groupe fondamental de
son complément par une procédure dont le principe est similaire a celui de 1’algorithme de
multiplication.



6. Processus et temps. Nous avons une facilité & penser en termes de processus ou de séquences
d’actions, ce qui peut souvent s’avérer tres utile dans le raisonnement mathématique. On
peut concevoir une fonction comme une action, un processus, qui fait passer du domaine a
son image.

Ceci est particuliérement précieux lors de la composition de fonctions. Cette fonctionnalité
s’avere également utile pour se souvenir des démonstrations : on retient souvent une démons-
tration comme un processus en plusieurs étapes. En topologie, la notion d’homotopie est
généralement pergue comme un processus qui prend du temps.

Mathématiquement, le temps n’est pas différent d’'une dimension spatiale supplémentaire,
mais comme les humains interagissent avec lui d’'une maniére tout a fait différente, il est
psychologiquement trés différent.

3. Comment la compréhension mathématique est-elle communiquée ?

La transmission de la compréhension d’une personne & une autre ne se fait pas automatiquement.
C’est un processus difficile et complexe. Par conséquent, pour analyser la compréhension humaine
des mathématiques, il est important de considérer qui comprend quoi et quand.

Les mathématiciens ont développé des habitudes de communication souvent inefficaces. Partout, les
organisateurs de colloques exhortent les intervenants & expliquer les choses en termes élémentaires.
Pourtant, la plupart des participants a un colloque moyen n’en retirent que peu d’intérét. Peut-étre
se perdent-ils dés les cinq premiéres minutes, et pourtant restent-ils assis en silence pendant les
55 minutes restantes. Ou peut-étre se désintéressent-ils rapidement parce que l'orateur se lance
dans des détails techniques sans donner aucune raison de les approfondir. A la fin de I'exposé, les
quelques mathématiciens proches du domaine de 'orateur posent une ou deux questions pour éviter
tout embarras.

Ce schéma est similaire a ce qui se produit souvent dans les salles de classe, ol nous nous conten-
tons de réciter machinalement ce que nous pensons que les éléves “devraient” apprendre, tandis
que ces derniers tentent de se confronter aux questions plus fondamentales de 'apprentissage de
notre langue et de deviner nos modeéles mentaux. Les livres compensent ce manque en fournissant
des exemples de résolution pour chaque type de probléme de devoirs. Les professeurs compensent
en donnant des devoirs et des examens beaucoup plus faciles que la matiére traitée du cours, puis
en les notant selon une échelle qui exige peu de compétences de compréhension. Nous supposons
que le probléme vient des étudiants plutét que de la communication : que les étudiants n’ont tout
simplement pas les capacités requises, ou qu’ils s’en fichent tout simplement.

Ce phénomene étonne les observateurs extérieurs, mais au sein de la communauté mathématique,
on le balaie d'un revers de main.

Une grande partie de la difficulté tient au langage et a la culture des mathématiques qui sont di-
visées en sous-domaines. Les concepts de base utilisés quotidiennement dans un sous-domaine sont
souvent étrangers a un autre. Les mathématiciens renoncent & essayer de comprendre les concepts
de base, méme ceux des sous-domaines voisins, & moins d’y avoir été initiés durant leurs études
supérieures.



En revanche, la communication est trés efficace au sein des sous-domaines des mathématiques. Dans
un méme sous-domaine, les chercheurs développent un corpus de connaissances et de techniques
communes. Grace a des échanges informels, ils apprennent a comprendre et a s’inspirer mutuelle-
ment de leurs raisonnements, ce qui permet d’expliquer les idées clairement et aisément.

Les connaissances mathématiques peuvent se transmettre a une vitesse étonnante au sein d’un
sous-domaine. Lorsqu'un théoréme important est démontré, il arrive souvent (mais pas toujours)
que la solution puisse étre communiquée en quelques minutes d’'une personne a ’autre au sein de
ce sous-domaine. La méme démonstration pourrait étre communiquée et généralement comprise
en une heure de discussion aux membres du sous-domaine. Elle pourrait faire 'objet d’un article
de 15 a 20 pages, qui pourrait étre lu et compris en quelques heures, voire quelques jours, par les
membres du sous-domaine.

Pourquoi observe-t-on une telle expansion entre la discussion informelle, ’exposé et la publication
d’un article? En téte-a-téte, les gens utilisent de larges canaux de communication qui dépassent
largement le cadre du langage mathématique formel. Ils utilisent des gestes, ils dessinent des images
et des schémas, ils produisent des effets sonores et utilisent le langage corporel. La communication
est plus susceptible d’étre bidirectionnelle, permettant ainsi aux individus de se concentrer sur ce
qui requiert le plus d’attention. Grace a ces canaux de communication, ils sont bien mieux placés
pour transmettre la situation, non seulement grace a leurs capacités logiques et linguistiques, mais
aussi grace a leurs autres facultés mentales.

Lors des discussions, les gens sont plus inhibés et plus formels. Le public des mathématiciens a
souvent du mal a poser les questions que la plupart des gens se posent, et les orateurs ont souvent
un plan préétabli irréaliste qui les empéche de répondre aux questions, méme lorsqu’on leur en pose.

Dans les articles, le langage reste plus formel. Les auteurs traduisent leurs idées en symboles et en
logique, et les lecteurs tentent de les retraduire.

Pourquoi existe-t-il un tel décalage entre la communication au sein d’un sous-domaine et la com-
munication générale 7 en dehors des sous-domaines, sans parler de la communication en dehors des
mathématiques 7

Les mathématiques possédent en quelque sorte un langage commun : un langage de symboles, de
définitions techniques, de calculs et de logique. Ce langage permet de transmettre efficacement
certains modes de pensée mathématique, mais pas tous. Les mathématiciens apprennent a traduire
presque inconsciemment certaines choses d’'un mode mental a 'autre, de sorte que certaines af-
firmations deviennent rapidement claires. Chaque mathématicien aborde les articles scientifiques
différemment, mais lorsque je lis un article dans un domaine que je maitrise, je me concentre sur
les idées sous-jacentes. Il m’arrive de parcourir plusieurs paragraphes ou suites d’équations et de
me dire : Ah oui, ils utilisent beaucoup de formalisme pour étayer telle ou telle idée.” Quand I'idée
est claire, la formalisation est généralement superflue et inutile : j’ai souvent I'impression que je
pourrais la formuler moi-méme plus facilement que de déchiffrer ce que les auteurs ont réellement
écrit. C’est comme acheter un grille-pain neuf avec un manuel de seize pages. Si vous savez déja



comment fonctionnent les grille-pain et si celui-ci ressemble & ceux que vous avez déja utilisés, vous
le brancherez peut-étre directement pour voir s’il marche, plutét que de lire d’abord tous les détails
du manuel.

Les personnes familiéres avec les méthodes de travail d’un sous-domaine reconnaissent divers sché-
mas d’énoncés ou de formules comme des expressions idiomatiques ou des circonlocutions pour
désigner certains concepts ou images mentales. Mais pour ceux qui ne sont pas encore familiarisés
avec le sujet, ces mémes schémas ne sont guére éclairants; ils sont méme souvent trompeurs. La
langue n’est vivante que pour ceux qui I'utilisent.

Je voudrais faire une remarque importante ici : certains mathématiciens maitrisent les modes de
pensée de plusieurs sous-domaines, parfois méme d’un grand nombre d’entre eux. Certains mathé-
maticiens apprennent le jargon de plusieurs sous-domaines durant leurs études supérieures, d’autres
assimilent rapidement le langage et la culture mathématiques qui leur sont étrangers, et d’autres
encore travaillent dans des centres de recherche en mathématiques ot ils sont exposés a de nombreux
sous-domaines. Ceux qui maitrisent plusieurs sous-domaines peuvent souvent exercer une influence
trés positive, en servant de ponts et en aidant différents groupes de mathématiciens a apprendre
les uns des autres. Cependant, les personnes possédant des connaissances dans de nombreux do-
maines peuvent aussi avoir un effet négatif, en intimidant les autres et en contribuant a valider et
a maintenir un systéme de communication généralement déficient. Par exemple, ce phénoméne se
produit souvent lors de colloques, ot une ou deux personnes trés érudites, assises au premier rang,
peuvent servir de guide de la pensée de l'orateur pour 'auditoire.

Un autre effet découle des grandes différences entre notre fagon de penser les mathématiques et
la fagon dont nous les écrivons. Un groupe de mathématiciens qui interagissent peut maintenir vi-
vante une collection d’idées mathématiques pendant des années, méme si la version écrite de leurs
travaux différe de leur pensée réelle, privilégiant davantage le langage, les symboles, la logique et
le formalisme.

Mais a mesure que de nouvelles générations de mathématiciens découvrent le sujet, ils ont tendance
a interpréter ce qu’ils lisent et entendent plus littéralement, de sorte que le formalisme et les méca-
nismes plus faciles a consigner et & communiquer tendent & progressivement supplanter les autres
modes de pensée.

Deux contrepoids a cette tendance empéchent les mathématiques de s’enliser entiéerement dans le
formalisme. Premiérement, les jeunes générations de mathématiciens découvrent et redécouvrent
sans cesse de nouvelles intuitions, réintroduisant ainsi diverses formes de pensée humaine dans les
mathématiques.

Deuxiémement, les mathématiciens inventent parfois des noms et trouvent des définitions unifica-
trices qui remplacent les circonlocutions techniques et offrent de bonnes clés pour appréhender les

concepts.

Des termes comme “groupe” pour remplacer



“un systéme de substitutions satisfaisant...”,

et “variété” pour remplacer...

“Nous mne pouvons pas donner de coordonnées pour paramétrer simul-
tanément toutes les solutions de mnos équations, mais au voisinage de
toute  solution particuliere, nous pouvons introduire des coordonnées
(f1(uy, ug, ug), foluy, us, us), fa(ur, ug, us), fa(ur, ug, us), fs(ur, uz,u3)) o au moins
un des dix déterminants... [et la, dix déterminants 3x3 de matrices de dérivées
partielles]... est non nul.”

peuvent ou peuvent ne pas avoir représenté des avancées dans la compréhension des experts, mais
elles facilitent grandement la communication de ces connaissances.

Nous, les mathématiciens, devons déployer des efforts bien plus importants pour communiquer les
idées mathématiques. Pour ce faire, nous devons accorder une bien plus grande importance a la
communication, non seulement de nos définitions, théorémes et démonstrations, mais aussi de nos
raisonnements. Nous devons reconnaitre la valeur des différentes maniéres d’appréhender une méme
structure mathématique.

Il nous faut consacrer davantage d’énergie a la compréhension et a l’explication des fondements
mentaux des mathématiques, et par conséquent moins d’énergie aux résultats les plus récents. Cela
implique de développer un langage mathématique efficace pour transmettre des concepts a ceux
qui ne les maitrisent pas encore.

Une partie de cette communication se fait par le biais des preuves.
4. Qu’est-ce qu’une preuve ?

Lorsque j’ai commencé mes études supérieures a Berkeley, j'avais du mal a imaginer comment je
pourrais prouver un théoréeme mathématique nouveau et intéressant. Je ne comprenais pas vraiment
ce qu’était une “preuve’.

En assistant a des séminaires, en lisant des articles et en discutant avec d’autres doctorants, j’ai
progressivement compris. Dans chaque domaine, certains théorémes et certaines techniques sont
généralement connus et acceptés. Lorsqu’on rédige un article, on s’y référe sans démonstration.
On consulte d’autres articles du domaine et on observe quels faits ils citent sans démonstration,
ainsi que les références de leur bibliographie. On s’inspire ainsi des autres pour appréhender les
démonstrations. Vous pouvez alors citer le méme théoréme et les mémes références. Il n’est pas né-
cessaire de lire I'intégralité des articles ou des ouvrages figurant dans votre bibliographie. Nombre
de notions communément admises ne sont en réalité étayées par aucune source écrite connue. Dés
lors que les spécialistes du domaine sont convaincus de la validité d’une idée, il n’est pas nécessaire
qu’elle soit formalisée par écrit.

Au début, j’étais trés sceptique quant a cette méthode. Je doutais de la véracité d’une idée. Mais j’ai
constaté que je pouvais interroger des personnes, et qu’elles pouvaient me fournir des explications



et des preuves, ou bien me renvoyer vers d’autres personnes ou des sources écrites qui contenaient
ces explications et preuves. Il existait des théorémes publiés dont on savait généralement qu’ils
étaient faux, ou dont les démonstrations étaient généralement reconnues comme incomplétes. Les
connaissances et la compréhension mathématiques étaient ancrées dans les esprits et dans le tissu
social de la communauté de personnes qui réfléchissaient a un sujet particulier. Ces connaissances
étaient étayées par des documents écrits, mais ces documents n’étaient pas vraiment élémentaires.

Je pense que ce schéma varie considérablement d’'un domaine a I’autre. Je m’intéressais aux branches
géométriques des mathématiques, ou il est souvent difficile de disposer d’un document reflétant
fidélement la pensée réelle. Dans les domaines plus algébriques ou symboliques, ce n’est pas né-
cessairement le cas, et j’ai I'impression que, dans certains domaines, les documents sont bien plus
représentatifs de la vie du domaine. Mais dans tout domaine, il existe une forte norme sociale de
validité et de vérité. La démonstration du denier théoréme de Fermat par Andrew Wiles en est
une bonne illustration, dans un domaine tres algébrique. Les experts ont rapidement admis que
sa démonstration était fondamentalement correcte sur la base d’idées générales, bien avant que les
détails puissent étre vérifiés. Cette démonstration fera I'objet d'un examen et d’une vérification
beaucoup plus poussés que la plupart des démonstrations mathématiques; mais quel que soit le
déroulement du processus de vérification, il contribue a illustrer comment les mathématiques évo-
luent par des processus psychologiques et sociaux plutot organiques.

En mathématiques, le flux d’idées et le jugement social sont bien plus fiables que les documents
formels. On a généralement du mal a vérifier la rigueur formelle des démonstrations, mais on est
trés doué pour déceler leurs faiblesses ou leurs erreurs potentielles.

Pour éviter tout malentendu, je tiens a souligner deux choses que je ne dis pas. Premiérement, je
ne suis pas partisan de tout affaiblissement de nos normes de preuve au sein de la communauté
mathématique, je m’efforce de décrire le fonctionnement réel du processus. Des démonstrations ri-
goureuses, capables de résister a ’examen critique, sont essentielles. Je pense que, dans I’ensemble,
le processus de démonstration fonctionne assez bien au sein de la communauté mathématique.
Le changement que je préconiserais serait que les mathématiciens accordent plus d’importance a
la rigueur de leurs démonstrations, en les rendant aussi claires et simples que possible afin que
toute faiblesse soit facilement repérable. Par ailleurs, je ne critique ni ’étude mathématique des
démonstrations formelles, ni ceux qui s’efforcent de rendre les raisonnements mathématiques plus
explicites et plus formels. Ce sont 1a deux activités utiles qui apportent de nouvelles perspectives
aux mathématiques.

J’ai consacré une part importante de ma carriére a explorer des questions mathématiques par ordi-
nateur. Compte tenu de cette expérience, j’ai été surpris de lire [’affirmation de Jaffe et Quinn selon
laquelle les mathématiques sont extrémement lentes et ardues, et qu’elles sont sans doute l’activité
humaine la plus rigoureuse. Le niveau d’exactitude et d’exhaustivité requis pour qu’un programme
informatique fonctionne est bien supérieur au niveau d’exigence des démonstrations valides au sein
de la communauté mathématique. Néanmoins, les grands programmes informatiques, méme lors-
qu’ils ont €été écrits et testés avec le plus grand soin, semblent toujours comporter des erreurs.E]

1. Note de la traductrice : Je me suis permis de mettre ces mots en italique car Thurston parle vrai et met ici le
doigt sur le nceud de l'incompréhsion (voire du mépris) des mathématiciens de U'informatique comme science, plutot
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Je pense que les mathématiques comptent parmi les activités humaines les plus enrichissantes in-
tellectuellement. Parce que nous exigeons une pensée claire et convaincante et que nous accordons
une grande importance a 1’écoute et a la compréhension mutuelle, nous n’entamons pas de débats
interminables ni de refontes mathématiques sans fin. Nous sommes ouverts & la discussion et préts
a étre convaincus par autrui. Intellectuellement, les mathématiques évoluent trés rapidement. Des
pans entiers du paysage mathématique se transforment et se métamorphosent de fagon étonnante
au cours d’une seule carriére.

Quand on consideére la difficulté d’écrire un programme informatique qui approche méme la portée
intellectuelle d’un bon article mathématique, et le temps et les efforts considérables qu’il faut y
consacrer pour le rendre presque formellement correct, il est absurde d’affirmer que les mathéma-
tiques telles que nous les pratiquons sont proches de la correction formelle.

Les mathématiques, telles que nous les pratiquons, sont beaucoup plus complétes et précises formel-
lement que les autres sciences, mais elles sont beaucoup moins complétes et précises formellement
quant a leur contenu que les programmes informatiques. La différence ne tient pas seulement a
la quantité d’efforts : la nature de ces efforts est qualitativement différente. Dans les grands pro-
grammes informatiques, une part considérable des efforts doit étre consacrée & une myriade de
problémes de compatibilité : s’assurer que toutes les définitions sont cohérentes, développer des
structures de données “efficaces” qui présentent une généralité utile mais non encombrante, déci-
der de la généralité “appropriée” des fonctions, etc. La proportion d’énergie consacrée a la partie
opérationnelle d’'un grand programme, par opposition a la partie administrative, est étonnamment
faible. En raison des problémes de compatibilité qui dégénérent presque inévitablement parce que
les définitions “correctes” changent a mesure que 'on ajoute de la généralité et des fonctionnalités,
les programmes informatiques doivent généralement étre réécrits fréquemment, souvent a partir de
zéro.

Un effort trés similaire devrait étre déployé en mathématiques pour les rendre formellement cor-
rectes et complétes. Ce n’est pas tant la correction formelle qui est prohibitivement difficile a petite
échelle, mais plutdt la multitude de formalisations possibles a petite échelle qui se traduisent par
un nombre considérable de choix interdépendants & grande échelle. Rendre ces choix compatibles
est extrémement complexe; cela impliquerait certainement de réécrire intégralement tous les ar-
ticles mathématiques anciens dont nous dépendons de résultats sirs. Il est également trés difficile
de trouver des définitions formelles de qualité, valables dans les divers contextes d’utilisation par
les mathématiciens et qui anticipent les développements futurs des mathématiques. Si nous pour-
suivions notre coopération, nous consacrerions une grande partie de notre temps aux commissions
internationales de normalisation afin d’établir des définitions uniformes et de résoudre d’impor-
tantes controverses.

Les mathématiciens peuvent combler les lacunes, corriger les erreurs et fournir des détails supplé-
mentaires et une analyse plus approfondie lorsqu’ils y sont invités ou incités. Notre systéme est
particulierement performant pour produire des théorémes fiables et solidement étayés. Simplement,
la fiabilité ne provient pas principalement de la vérification formelle des arguments formels par les

que comme technologie.
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mathématiciens ; elle provient de la réflexion attentive et critique des mathématiciens sur les idées
mathématiques.

Au niveau le plus fondamental, les fondements des mathématiques sont beaucoup plus fragiles
que les mathématiques que nous pratiquons. La plupart des mathématiciens adhérent a des prin-
cipes fondamentaux qui relévent de la fiction polie. Par exemple, il est admis qu’il est impossible
de construire ou méme de définir un ordre cohérent des nombres réels. Il existe de nombreux in-
dices (mais aucune preuve formelle) suggérant que nous pouvons nous permettre ces fictions polies
sans étre démasqués, mais cela ne les rend pas pour autant justes. Les théoriciens des ensembles
construisent de nombreux “univers mathématiques” alternatifs et mutuellement contradictoires, de
sorte que si I'un est cohérent, les autres le sont aussi. Dés lors, il est trés difficile d’affirmer avec
certitude que I'un ou 'autre soit le bon choix ou le choix naturel. Le théoréme d’incomplétude de
Godel implique qu’il ne peut exister de systéme formel a la fois cohérent et suffisamment puissant
pour servir de base a toutes les mathématiques que nous pratiquons.

Contrairement aux humains, les ordinateurs excellent dans ’exécution de processus formels. Des
personnes travaillent activement a un projet visant a formaliser informatiquement certaines par-
ties des mathématiques, avec des déductions formelles rigoureusement correctes. Je pense qu’il
s’agit d'un projet ambitieux mais treés enrichissant, et je suis convaincu que nous en tirerons de
nombreux enseignements. Ce processus contribuera a simplifier et a clarifier certains concepts. En
mathématiques, d’ici quelques années, je pense que nous disposerons de programmes informatiques
interactifs capables d’aider a compiler des pans importants de mathématiques formellement com-
plétes et correctes (basées sur quelques hypothéses peut-étre fragiles, mais au moins explicites), et
qu’ils deviendront partie intégrante de I’environnement de travail standard du mathématicien.

Il convient toutefois de reconnaitre que ce sont les démonstrations compréhensibles et vérifiables
par I’humain que nous produisons réellement qui importent le plus, et qu’elles différent sensible-
ment des démonstrations formelles. A I'heure actuelle, les démonstrations formelles sont hors de
portée et, pour la plupart, superflues : nous disposons de méthodes humaines efficaces pour vérifier
la validité mathématique.

5. Qu’est-ce qui motive les gens a faire des mathématiques ?

Il y a une véritable joie a faire des mathématiques, & apprendre des modes de pensée qui expliquent,
organisent et simplifient. On peut ressentir cette joie en découvrant de nouvelles mathématiques,
en en redécouvrant d’anciennes, en apprenant une fagon de penser auprés d’une personne ou d’un
texte, ou en trouvant une nouvelle fagcon d’expliquer ou d’envisager une structure mathématique
connue.

Cette motivation intrinséque pourrait nous laisser croire que nous faisons des mathématiques uni-
quement pour elles-mémes. Or, c’est faux : le contexte social est primordial. Nous sommes inspirés
par les autres, nous recherchons leur reconnaissance et nous aimons les aider a résoudre leurs pro-
blémes mathématiques. Nos gotits évoluent en fonction des autres. L’interaction sociale se manifeste
par des rencontres en face a face, mais aussi par des échanges écrits et électroniques, des prépu-
blications et des articles de revues scientifiques. L'un des effets de ce systéme mathématique trés
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social est la tendance des mathématiciens a suivre les modes. Pour produire de nouveaux théorémes
mathématiques, cela n’est probablement pas trés efficace : il serait sans doute préférable que les
mathématiciens couvrent le champ intellectuel de maniére beaucoup plus équilibrée. Mais la plupart
des mathématiciens n’aiment pas la solitude et ont du mal & rester enthousiastes & propos d’un
sujet, méme s’ils font personnellement des progrés, a moins d’avoir des collégues qui partagent leur
enthousiasme.

Outre notre motivation intrinséque et notre motivation sociale informelle a faire des mathématiques,
nous sommes également motivés par des considérations économiques et de statut. Les mathémati-
ciens, comme les autres universitaires, sont souvent amenés a juger et a étre jugés. En commengant
par les notes, et en poursuivant avec les lettres de recommandation, les décisions d’embauche, les
décisions de promotion, les rapports des référents, les invitations a prendre la parole, les prix...
nous sommes impliqués dans de nombreux systémes d’évaluation, au sein d’un systéme extréme-
ment compétitif.

Jaffe et Quinn analysent la motivation & faire des mathématiques en termes d’une monnaie com-
mune a laquelle croient de nombreux mathématiciens : la reconnaissance des théorémes.

Je pense que notre forte emphase collective sur les crédits théoriques a un effet négatif sur le
progrés mathématique. Si notre objectif est de faire progresser la compréhension humaine des ma-
thématiques, nous aurions tout intérét & reconnaitre et a valoriser un éventail d’activités bien plus
large. Ceux qui découvrent comment démontrer des théorémes le font au sein d’'une communauté
mathématique; ils n’agissent pas seuls. Ils s’appuient sur une compréhension des mathématiques
qu’ils acquiérent aupres d’autres mathématiciens. Une fois un théoréme démontré, la communauté
mathématique compte sur le réseau social pour diffuser les idées auprés de ceux qui pourraient les
exploiter davantage ; le support imprimé est bien trop obscur et lourd.

Méme si 'on adopte le point de vue restrictif selon lequel nous produisons des théorémes, 1’équipe
reste importante. Le football peut servir de métaphore. Il peut n’y avoir qu’un ou deux buts lors
d’un match de football, marqués par une ou deux personnes. Cela ne signifie pas pour autant que les
efforts de tous les autres sont vains. On ne juge pas les joueurs d’une équipe de football uniquement
sur leur capacité & marquer des buts individuellement ; on juge 1’équipe sur son fonctionnement en
tant qu’équipe.

En mathématiques, il arrive souvent qu'un groupe de mathématiciens progresse grace a un ensemble
d’idées. Sur le chemin de ces avancées se dessinent des théorémes qui seront presque inévitablement
démontrés par I'un ou 'autre d’entre eux. Parfois, ce groupe de mathématiciens peut méme antici-
per la nature de ces théorémes. Il est beaucoup plus difficile de prédire qui démontrera effectivement
le théoréme, méme si quelques personnes se distinguent généralement par des atouts particuliers.
Cependant, leur capacité & démontrer ces théorémes repose sur les efforts collectifs de ’équipe.
L’équipe a également pour mission d’assimiler et d’utiliser les théorémes une fois démontrés. Méme
si une seule personne parvenait & démontrer tous les théorémes du parcours a elle seule, ses efforts
seraient vains si personne d’autre ne les apprenait.

Il existe un phénomeéne intéressant concernant les personnes “pointues”. Il arrive régulierement
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qu’une personne qui se trouvait au milieu d’'un groupe démontre un théoréme qui est largement
reconnu comme étant important. Leur statut au sein de la communauté, leur position hiérarchique
s’éleve immédiatement et de facon spectaculaire. Dans ce cas, ils deviennent généralement beaucoup
plus productifs comme centres d’idées et source de théorémes. Pourquoi ? Premiérement, on observe
une forte augmentation de 'estime de soi, et une augmentation concomitante de la productivité.
Deuxiémement, lorsque leur statut s’éleéve, les individus se trouvent davantage au centre du réseau
d’idées, les autres les prennent davantage au sérieux. Enfin, et c’est peut-étre le plus important,
une percée mathématique représente généralement une nouvelle facon de penser, et les fagons de
penser efficaces peuvent généralement étre appliquées dans plus d’une situation.

Ce phénomeéne me convainc que ’ensemble de la communauté mathématique gagnerait en produc-
tivité si nous prenions conscience de la véritable valeur de notre travail. Jaffe et Quinn proposent
un systéme de roles reconnus, divisés en “spéculation” et “démonstration”. Une telle division ne
fait que perpétuer le mythe selon lequel nos progrés se mesurent en unités de théorémes standards
déduits. C’est un peu comme 'erreur de celui qui imprime les 10 000 premiers nombres premiers.
Ce que nous produisons, c’est la compréhension humaine. Nous disposons de multiples fagons de
comprendre et de nombreux processus contribuent & notre compréhension. Nous serons plus satis-
faits, plus productifs et plus heureux si nous prenons conscience de cela et si nous nous y intéressons.

6. Quelques expériences personnelles

Puisque cet essai est né d’une réflexion sur le décalage entre mes expériences et la description de
celles de Jaffe et Quinn, j'aborderai deux expériences personnelles, dont celle a laquelle ils ont fait
allusion.

Je ressens une certaine géne a écrire cela, car j’ai des regrets concernant certains aspects de ma
carriére : si je devais recommencer, fort de ma compréhension actuelle de moi-méme et du proces-
sus mathématique, j'aimerais faire beaucoup de choses différemment. J’espére qu’en décrivant ces
expériences avec la plus grande franchise, telles que je m’en souviens et les comprends, je pourrai
aider d’autres personnes a mieux appréhender ce processus et a en tirer des enseignements a I’avance.

Je commencerai par aborder briévement la théorie des feuilletages, qui fut mon premier sujet
d’étude, dés mes études supérieures. (Il n’est pas nécessaire ici que vous sachiez ce qu’est un feuille-
tage).

A cette époque, les feuilletages étaient devenus un sujet d’étude majeur pour les topologues géo-
métriques, les spécialistes des systémes dynamiques et les géomeétres différentiels. J’ai rapidement
démontré quelques théorémes remarquables. J’ai démontré un théoréme de classification pour les
feuilletages, donnant une condition nécessaire et suffisante pour qu'une variété admette un feuille-
tage. J’ai également démontré plusieurs autres théorémes importants. J’ai rédigé des articles res-
pectables et publié au moins les théorémes les plus importants. Il était difficile de trouver le temps
suffisant pour écrire en suivant le rythme des démonstrations que j’avais en téte, et j’ai accumulé
un retard considérable.

Un phénomeéne intéressant s’est produit. En 'espace de deux ans environ, le domaine a commencé
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a se vider de facon spectaculaire. J’ai entendu dire par plusieurs mathématiciens qu’ils donnaient
ou recevaient des conseils de ne pas étudier les feuilletages; ils disaient que Thurston était en train
de le vider. On m’a dit (non pas pour me plaindre, mais pour me complimenter) que je ruinais le
domaine. Les étudiants de troisiéme cycle ont cessé d’étudier les feuilletages, et assez vite, je me
suis moi aussi tourné vers d’autres centres d’'intérét.

Je ne pense pas que ’abandon ait eu lieu parce que le territoire était intellectuellement épuisé;
il y avait (et il y a encore) de nombreuses questions intéressantes qui restent et qui sont proba-
blement abordables. Depuis lors, des développements intéressants ont été réalisés par les quelques
personnes qui sont restées dans ce domaine ou qui y sont entrées, et d’importants développements
ont également eu lieu dans des domaines connexes qui, je pense, auraient été beaucoup plus ra-
pides si les mathématiciens avaient continué a poursuivre vigoureusement la théorie des feuilletages.

Aujourd’hui, je pense que peu de mathématiciens maitrisent encore les connaissances sur les feuille-
tages telles qu’elles existaient a I’époque, méme si certains aspects de la théorie des feuilletages, y
compris les développements survenus depuis, sont toujours trés actifs.

Je crois que deux facteurs écologiques ont joué un roéle bien plus important dans le ralentissement
des discussions que toute forme d’épuisement des ressources intellectuelles qui a pu se produire.

Tout d’abord, les résultats que j'ai démontrés (ainsi que certains résultats importants d’autres
chercheurs) ont été présentés dans un style mathématique classique et rigoureux. Ils dépendaient
fortement de lecteurs possédant certaines connaissances et intuitions. La théorie des feuilletages
était un sous-domaine récent et opportuniste, et les connaissances de base n’étaient pas standardi-
sées. Je n’ai pas hésité a faire appel a toutes les notions mathématiques que j’avais apprises d’autres
personnes. Les articles que j’ai écrits ne consacraient pas (elles ne le pouvaient pas) beaucoup de
temps a expliquer le contexte culturel. Ils ont consigné des raisonnements et des conclusions de
haut niveau auxquels j’étais souvent parvenu aprés beaucoup de réflexion et d’efforts. J’ai égale-
ment distillé de précieuses bribes d’intuition cryptiques, telles que “I'invariant de Godbillon-Vey
mesure ’oscillation hélicoidale d’un feuilletage”, qui sont restées mystérieuses pour la plupart des
mathématiciens qui les ont lues. Cela a créé une barriére a l'entrée élevée, je pense que de nom-
breux étudiants diplomés et mathématiciens étaient découragés par la difficulté d’apprendre et de
comprendre les démonstrations des théorémes clés.

Deuxiémement, il faut se pencher sur les avantages que cela peut apporter aux autres acteurs de
sous-domaine. Lorsque j’ai commencé a travailler sur les feuilletages, j'avais 'impression que les
gens voulaient connaitre les réponses. Je pensais qu’ils recherchaient un recueil de théorémes puis-
sants et démontrés, applicables & la résolution d’autres questions mathématiques. Mais ce n’est
qu'une partie de I'histoire. Plus que des connaissances, les gens recherchent une compréhension
personnelle. Et dans notre systéme basé sur les crédits, ils veulent et ont également besoin de cré-
dits pour démontrer leurs théorémes.

Je vais faire un bond de quelques années en avant, jusqu’au sujet auquel Jaffe et Quinn ont fait

allusion, lorsque j’ai commencé a étudier les variétés tridimensionnelles et leur relation avec la
géométrie hyperbolique. (Encore une fois, il importe peu que vous sachiez de quoi il s’agit). J’ai
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progressivement développé, au fil des années, une certaine intuition pour les variétés hyperboliques
de dimension trois, avec un répertoire de constructions, d’exemples et de preuves. (Ce processus
a débuté durant mes études de premier cycle et a été fortement encouragé par des applications
aux feuilletages). Aprés un certain temps, j’ai conjecturé que toutes les variétés de dimension trois
possédent une certaine structure géométrique ; cette conjecture est finalement devenue la conjecture
de géométrisation. Environ deux ou trois ans plus tard, j’ai démontré le théoréme de géométrisation
pour les variétés de Haken. C’était un théoréme difficile, et j’y ai consacré énormément d’efforts.
Une fois la démonstration achevée, j’ai consacré encore plus d’efforts a la vérifier, a rechercher les
difficultés et a la confronter & des informations indépendantes.

Je voudrais préciser davantage ce que j’entends par “j’ai démontré ce théoréme”. Cela signifiait que
j'avais un flux d’idées clair et complet, y compris les détails, qui résistait & un examen minutieux,
aussi bien de ma part que de celle des autres. Les mathématiciens ont des styles de pensée trés
variés. Mon style ne consiste pas a formuler des généralités hatives et imprudentes, qui ne sont que
des pistes ou des inspirations : je construis des modéles mentaux clairs et je réfléchis en profondeur.
Mes démonstrations se sont avérées tout a fait fiables. Je n’ai jamais eu de difficulté a étayer mes
affirmations ni & fournir des détails sur ce que j’ai prouvé. Je suis capable de déceler les failles de
mon propre raisonnement comme de celui des autres.

Cependant, la traduction de ma propre pensée en un discours communicable représente parfois un
défi considérable. Mon parcours en mathématiques a été assez autodidacte et atypique : pendant
plusieurs années, j’ai appris par moi-méme, développant mes propres modéles mentaux pour appré-
hender les mathématiques. Cela m’a souvent été tres utile, car il m’est facile par la suite d’intégrer
les modéles mentaux standards partagés par les mathématiciens. Cela signifie que certains concepts
que j’utilise librement et naturellement dans ma réflexion personnelle sont étrangers a la plupart
des mathématiciens avec lesquels je discute. Mes modéles et structures mentaux personnels sont
similaires, par leur nature, aux types de modéles partagés par des groupes de mathématiciens, mais
il s’agit souvent de modéles différents. Au moment de la formulation de la conjecture de géométrisa-
tion, ma compréhension de la géométrie hyperbolique en était un bon exemple. Un autre exemple,
parmi d’autres, est la compréhension des espaces topologiques finis, un sujet atypique qui peut
éclairer de nombreuses questions, mais qu’il n’est généralement pas utile de développer dans un cas
particulier, car il existe des circonlocutions standard qui I’évitent.

Ni la conjecture de géométrisation ni sa démonstration pour les variétés de Haken n’étaient dans les
plans des mathématiciens de I’époque ; elles allaient a contre-courant des tendances en topologie des
trente années précédentes et prirent tout le monde par surprise. Pour la plupart des topologues de
I’époque, la géométrie hyperbolique était une branche obscure des mathématiques, méme si d’autres
groupes de mathématiciens, comme les géométres différentiels, la comprenaient sous certains angles.
Il fallut un certain temps aux topologues pour saisir la signification, 1'utilité et la pertinence de la
conjecture de géométrisation.

Parallélement, j’ai commencé a rédiger des notes sur la géométrie et la topologie des 3-variétés, en
lien avec le cours de troisiéme cycle que je dispensais. Je les ai distribuées a quelques personnes,
et trés vite, de nombreuses autres, du monde entier, m’en ont demandé des exemplaires. La liste
de diffusion a atteint environ 1200 personnes auxquelles j’envoyais des messages tous les deux mois
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environ. J’ai essayé de communiquer mes véritables pensées dans ces notes. De nombreux sémi-
naires ont été organisés a partir de celles-ci, et j’ai requ beaucoup de retours. Dans ’ensemble, les
commentaires étaient du genre : “Vos notes sont vraiment inspirantes et magnifiques, mais je dois
vous dire que nous avons passé 3 semaines en séminaire a travailler sur les détails du §n.n. Plus
d’explications seraient certainement utiles”.

J’ai également donné de nombreuses conférences a des groupes de mathématiciens sur ’étude des
3-variétés du point de vue géométrique, et sur la démonstration de la conjecture de géométrisation
pour les variétés de Haken. Au début, ce sujet était étranger a presque tout le monde. Il était
difficile de communiquer; les connaissances étaient limitées & mon propre raisonnement, et non
partagées par la communauté mathématique. Plusieurs théories mathématiques ont alimenté cet
ensemble d’idées : la topologie des variétés a trois dimensions, les groupes kleiniens, les systémes dy-
namiques, la topologie géométrique, les sous-groupes discrets des groupes de Lie, les feuilletages, les
espaces de Teichmiiller, les difféomorphismes pseudo-Anosov, la théorie géométrique des groupes,

ainsi que la géométrie hyperbolique.

Nous avons organisé un atelier d’été de ’AMS a Bowdoin en 1980, ot de nombreux mathématiciens
spécialisés dans les sous-domaines de la topologie de basse dimension, des systémes dynamiques et
des groupes kleiniens sont venus.

Ce fut une expérience intéressante d’échange culturel. Il est devenu évident & quel point les preuves
dépendent du public. Nous démontrons les choses dans un contexte social et les adressons & un pu-
blic spécifique. Je pourrais communiquer en deux minutes certaines parties de cette démonstration
aux topologues, mais concernant les analystes, il fallait une heure de cours magistral avant qu’ils
ne commencent a comprendre. De méme, certaines notions qui pouvaient étre expliquées en deux
minutes aux analystes nécessitaient une heure de cours avant que les topologues ne les assimilent.
Et il y avait de nombreuses autres parties de la démonstration qui, en résumé, auraient dit prendre
deux minutes, mais qu’aucun membre du public a I’époque n’avait les capacités mentales néces-
saires pour assimiler en moins d’une heure.

A cette époque, il n’y avait pratiquement aucune infrastructure ni aucun contexte pour ce théoréme,
si bien que le passage de la fagon dont I'idée avait germé dans mon esprit a ce que je devais dire
pour la faire comprendre, sans parler de I’énergie que le public devait consacrer a la comprendre,
était tres important.

Suite & mon expérience avec les feuilletages et sous la pression sociale, j’ai concentré mes efforts
sur le développement et la présentation de l'infrastructure, tant dans mes écrits que dans mes
échanges. J’ai expliqué les détails aux rares personnes intéressées. J’ai rédigé des articles expo-
sant les éléments essentiels de la démonstration du théoréme de géométrisation pour les variétés
de Haken, mais ces articles n’ont suscité quasiment aucun retour. De méme, peu de personnes ont
approfondi les sections les plus complexes et les plus approfondies de mes notes avant bien plus tard.

Il en résulte qu’aujourd’hui, un bon nombre de mathématiciens possédent ce qui faisait cruellement

défaut au début : une compréhension pratique des concepts et de I'infrastructure propres a cette
discipline. L’activité mathématique y a été et demeure trés florissante. En me concentrant sur la
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mise en place de cette infrastructure, I’explication et la publication des définitions et des modes
de pensée, mais en tardant & énoncer ou a publier les démonstrations de tous les “théorémes” que
je savais démontrer, j’ai laissé la porte ouverte a de nombreux autres chercheurs. Cela a permis a
d’autres de découvrir et de publier d’autres démonstrations du théoréme de géométrisation. Ces
démonstrations ont contribué au développement de concepts mathématiques qui sont en eux-mémes
trés intéressants et qui ont mené & des avancées ultérieures en mathématiques.

Ce que les mathématiciens attendaient et dont ils avaient le plus besoin me concernant, c’était
d’apprendre ma fagon de penser, et non pas en réalité ma démonstration de la conjecture de géo-
métrisation pour les variétés de Haken. Il est peu probable que la démonstration de la conjecture
de géométrisation générale consiste a pousser plus loin la méme démonstration.

Un autre probléme réside dans le fait que certaines personnes ont besoin ou souhaitent un résultat
accepté et validé, non pas pour 'apprendre, mais pour pouvoir le citer et s’y fier.

Les mathématiciens ont en fait trés rapidement accepté ma démonstration, et ont commencé a la
citer et a I'utiliser en se basant sur la documentation existante, sur leur expérience et leur confiance
en moi, et sur 'acceptation par les experts avec lesquels j’avais passé beaucoup de temps & commu-
niquer la démonstration. Le théoréme est désormais documenté, grace a des sources publiées dont
je suis 'auteur et d’autres, si bien que la plupart des gens se sentent en sécurité pour le citer; les
spécialistes du domaine n’ont certainement pas remis en question sa validité, ni exprimé le besoin
de détails qui ne sont pas disponibles.

Toutes les démonstrations n’ont pas le méme role dans I’échafaudage logique que nous construisons
pour les mathématiques. Cette démonstration particuliére n’a probablement qu’une valeur logique
temporaire, bien qu’elle ait une grande valeur motivationnelle en contribuant a étayer une certaine
vision de la structure des 3-variétés. La conjecture de géométrisation compléte reste une conjecture.
Cela a été démontré dans de nombreux cas et est corroboré par de nombreuses preuves informa-
tiques, mais cela n’a pas encore été prouvé de maniére générale. Je suis convaincu que la preuve
générale sera découverte, j'espére d’ici quelques années. A ce moment-la, les preuves concernant
des cas particuliers deviendront probablement obsolétes.

Par ailleurs, ceux qui souhaitent utiliser la technologie géométrique ont tout intérét a partir de
I’hypothése “Soit M? une variété admettant une décomposition géométrique”, car celle-ci est plus
générale que “Soit M? une varié¢té de Haken”. Les personnes qui ne souhaitent pas utiliser cette
technologie ou qui s’en méfient peuvent I’éviter. Méme lorsqu’un théoréme concernant les variétés
de Haken peut étre démontré par des techniques géométriques, il est trés précieux de trouver des
techniques purement topologiques pour le démontrer.

Dans cet épisode (qui se poursuit encore), je pense avoir réussi a éviter les deux pires scénarios
possibles : soit ne pas révéler ma découverte et ma démonstration, en gardant le secret (peut-étre
dans Iespoir de prouver la conjecture de Poincaré), soit présenter une théorie incontestable et dif-

ficile & apprendre, sans praticiens pour la maintenir en vie et la faire grandir.

Je peux aisément énumérer les regrets que j’ai concernant ma carriére. Je n’ai pas publié autant que
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jlaurais dt. Outre le théoréme de géométrisation des variétés de Haken, il existe un certain nombre
de projets mathématiques que je n’ai pas présentés de maniére satisfaisante, voire pas du tout, a
la communauté mathématique. Lorsque je me suis davantage concentré sur le développement de
I'infrastructure plutot que sur les théorémes fondamentaux de la théorie géométrique des 3-variétés,
je me suis quelque peu désintéressé du sujet, qui a continué d’évoluer ; et je n’ai pas activement ni
efficacement promu le domaine ni les carriéres des brillants chercheurs qui y travaillent. (Mais un
certain désengagement me semble un effet secondaire presque inévitable de 'encadrement d’étu-
diants de troisiéme cycle et d’autres personnes : pour véritablement confier des axes de recherche
a d’autres, il est nécessaire de lacher prise et de cesser de trop y penser).

D’un autre coté, j’ai été occupé et productif, dans de nombreuses activités différentes. Notre systéme
ne dégage pas de temps supplémentaire pour que des personnes comme moi puissent se consacrer a
I’écriture et a la recherche ; au contraire, il nous submerge de demandes et d’opportunités de travail
additionnel, et mon premier réflexe a été d’accepter la plupart d’entre elles. J’ai investi beaucoup
d’efforts dans des activités non créditées que j’apprécie autant que la démonstration de théorémes :
la politique mathématique, la révision de mes notes en vue d’un ouvrage de haute qualité, I'ex-
ploration de I'informatique en mathématiques, la didactique des mathématiques, le développement
de nouveaux outils de communication mathématique par le biais du Centre de géométrie (comme
notre premiére expérience, la vidéo “Not Knot”), la direction du MSRI, etc.

Je pense que ce que j’ai fait n’a pas optimisé mes “crédits”. Je n’ai pas ressenti le besoin impérieux
de courir apreés les crédits. En effet, j’ai commencé a étre confronté a d’autres défis que la simple

démonstration de nouveaux théorémes.

Je pense que mes actions ont bien contribué a stimuler les mathématiques.

19



