import numpy as np
from numpy import *

def SWFevalue(m,n,sign,c,smax,eps):
csq = sigh*c*c
c2D2 = 0.5*csq
c4 = csg*csq

nMm = n-m

fm2M1 = 4.0*m*m- 1.0

riStart = 0@ if nMm%2 == 0 else 1
r = riStart

fr =r

tmPr = 2*m+r

mPr = m+r

tmPtrM1 = 2.0*mPr-1.0
for s in range(riStart, (nMm+1)//2+1):
Bi[s] = (fr+2.0)*(fr+1.0)*(tmPr+2.0)*(tmPr+1.0)*
c4/((tmPtrM1+4.0)* (tmPtrMi+4.0)* (tmPtrM1+2.0)* (tmPtrM1+6.0))
G1[s] = mPr*(mPr+1.0)+c2D2*(1.0-fm2M1/(tmPtrM1*(tmPtrM1+4.0)))
fr += 2.0
tmPr += 2.0
tmPtrM1 += 4.0
mPr += 2.0
r2start = nMm+2*smax
fr = r2Start
tmPr = 2*m+r2Start
mPr = m+r2Start
tmPtrM1=2*mPr-1
for s in range(1, smax+1):
B2[s]= fr*(fr-1.0)*tmPr*(tmPr-1.0)*c4/(tmPtrM1*tmPtrM1* (tmPtrM1-
2.0)*(tmPtrM1+2.0))
G2[s]= mPr*(mPr+1.0)+c2D2*(1.0-fm2M1/(tmPtrM1*(tmPtrM1+4.0)))

fr -= 2.0
tmPr -= 2.0
tmPtrM1 -= 4.0
mPr -= 2.0

if n ==

if abs(c) < 3.0:
Lest = LPS(m,n,csq)
else:
Lest = LAS(m,n,sign,c)
else:
if abs(c) < 4.0:
Lest = LPS(m,n,csq)

else:
Lest = LAS(m,n,sign,c)
Lu = Lest+0.1
Ld = Lest-0.1
Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)
ud = U(B1, Gi, B2, G2, m, n, riStart, r2Start, smax, Ld)
k =1

while Uu*Ud > 0.0:
Lstep= Lu- Ld
if abs(Uu) < abs(uUd):
Lu += Lstep
Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)
else:
Ld -= Lstep
ud = Uu(B1, Gi, B2, G2, m, n, riStart, r2Start, smax, Ld)
if k > NTRY:
#print(f'\n SwWFevalue bracket > {NTRY} tries : O returned')
return(0.0)
k = k+1
Uu = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lu)

Umid = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Ld)

if Uu < 0.0:
dL = Ld-Lu
Lrt = Lu
else:
dL = Lu-Ld
Lrt = Ld
k =0
while (abs(dL) >= eps) and (Umid !'= 0.0):
dL *= 0.5

Lmid = Lrt+dL
Umid = U(B1, G1, B2, G2, m, n, riStart, r2Start, smax, Lmid)
if (Umid <= 0.0):

Lrt = Lmid
k = k+1
if k > KMAX:
print(f'\n > {KMAX} tries to bisect root')
Umid = 0.0
return(Lrt)

def LAS(m, n, sign, c):
if sign > 0:
qg=2%(n-m) +1

g2 = g*q

g3 = g2*q

q4 = g3*q

a5 = g4*q

q6 = g5*q

fm =m

m2 = fm*fm

m4 = m2*m2

mé = m4*m2

LO = c*q+m2-(q2+5.0)/8.0

L1 = -q*(q2+11.0-32.0*m2)/64
L2 = -(5.0%(q4+26.0*q2+21.0)-384.0*m2*(q2+1.0))/1024.0
L3 =

-0*((33.0%*q4+1594.0*q2+5621.0)/128.0-m2* (37.0*q2+167.0)+m4/8.0)/128.0

L4 = -((63.0*q6+4940.0*q4+43327*(2+22470.0)/65536.0-
m2*(115.0*q4+1310.0*q2+735.0)/512.0+3.0*m4* (q2+1.0)/8.0)

L5 = -q*((527.0*q6+61529.0*q4+1043961.0*q2+2241599.0)/1048576.0-
m2*(5739.0*q4+127550.0%(2+298951.0)/32768.0+m4* (355.0*q2+1505.0)/512.0-m6/16.0)

else:
nMm = n-m
if nMm % 2 == 0:
nu = nMm/2

q=n+1
else:
nu = (nMm-1)/2
q=n
q2 = g*q
g3 = g2*q
q4 = g3*q
a5 = g4*q
g6 = g5*q
fm=m
m2 = fm*fm
m4 = m2*m2
mé = m4*m2
LO = -c*c+2.0*c*(2.0*nu+fm+1.0)-2.0*nu*(nu+fm+1.0)-(fm + 1.0)
L1 = -g*(g2+1.0- m2)/8.0
L2 = -(5.0%*q4+10.0*q2+1.0-2.0*m2*(3.0*q2+1.0)+m4)/64.0
L3 = -q*(33.0*q4+114.0*q2+37.0-2.0*m2*(23.0*q2+25.0)+13.0*m4)/512.0
L4 = -(63.0*(q6+340.0*q4+239.0*q2+14.0-

10.0*m2*(10.0*q4+23.0%q2+3.0)+m4* (39.0%(2-18.0)-2.0*m6)/1024.0

L5 = 0.0
cCR = 1.0/c
LLAS = LO+(L1+(L2+(L3+(L4+L5*CR)*CR)*CcR)*CcR)*cR
return(LLAS)

def LPS(m, n, csq):
Suite de puissances pour valeurs propres de fonctions d onde spheroidales

LO=n*(n+1)

tm = 2*m

tn = 2*n

tnM1 tn-1.

tnM3 tn-3.
tnM5 tn-5.
tnM7 tn-7.
tnP1 tn+l.
tnP3 tn+3.
tnP5 tn+5.
tnP7 tn+7.
tnP9 tn+9.

nMm = n-m

nMmM1 nMm-1.

nMmM2 nMm-2.,
nMmM3 nMm-3.
nMmP1 nMm+1.

nMmP2 nMm+2 .

nMmP3 nMm+3.

nMmP4 nMm+4,
nPm = n+m

nPmM1 nPm-1.
nPmM2 nPm-2,
nPmM3 nPm-3.
nPmP1 nPm+1.
nPmP2 nPm+2.
nPmP3 nPm+3.
nPmP4 nPm+4,

L2 = 0.5%(1.0-((tm-1.0)*(tm+1.0))/(tnM1*tnP3))

L4 =
0.5* (-nMMP1*nMmMP2*nPmP1*nPmP2/ (pow(tnP3, 3.0)*tnP5)+nMmMM1*nMm*nPmM1*nPm/
(tnM3*pow(tnM1,3.0)))/tnP1

L6 = (tm*tm-1.0)* (nMmMP1*nMmMP2*nPmP1*nPmP2/ (pow(tnP3,4.0)*tnP5*tnP7)-
NMmM1*nMm*nPmM1*nPm/ (tnM5*tnM3*pow(tnM1,4.0)))/(tnM1*tnP1*tnP3)

A = (nMmM1*nNMm*nPmM1*nPm/ (pow(tnM5,2.0)*tnM3*pow(tnM1,5.0))-
NMMP1*nNMmP2*nPmP1*nPmP2/ (pow(tnP3,5.0)*tnP5*tnP7*tnP7))/
(tnM1*tnM1*tnP1*tnP3*tnP3)

B =
(NMMM3*NMMM2 *NMMM1* nMm*NPMM3*nPmM2*nPmM1*nPm/ (tnM7* tnM5* tnM5*pow(tnM3, 3.0) *pow(t
nM1,4.0))-nMmP1*nNMmP2*nMmP3* nMmP4*nPmP1*nPmP2*nPmP3*nPmP4/
(pow(tnP3,4.0)*pow(tnP5,3.0)*tnP7*tnP7*tnP9))/tnP1

C = (pow(nMmP1*nMmP2*nPmP1*nPmP2,2.0)/(pow(tnP3,7.0)*tnP5*tnP5)-
pow(NMMM1*nMm*nPmM1*nPm,2.0)/(tnM3*tnM3*pow(tnM1,7.0)))/(tnP1*tnP1)

D =
NMMM1*nNMm*NMMP1*NMmP2*nPmM1*nPm*nPmP1*nPmP2/ (tnM3*pow(tnM1*tnP3,4.0)*tnP1*tnP1*t
nP5)

L8 = 2.0*pow(tm*tm-1.0,2.0)*A+B/16.0+C/8.0+D/2.0

LLPS = LO+(L2+(L4+(L6+L8*CcSq)*csq)*csq)*csq

return(LLPS)

S
[oNoNoNoNoNoNoNoNO]
[cNoNoNoNoNoNO]

[cNoNoNoNoNoNO]

def U (B1, G1l, B2, G2, m, n, riStart, r2Start, smax, LL):
Fraction continue avec suite Ul de valeurs propres de fonction d onde
spheroidale ; fini
if n == m+riStart:
Ul= G1[riStart]-LL
else:
Ul = Bil[riStart]/(Gl[riStart]-LL)

sStop = (n-m-1)/2
S = rilStart+1
while s <= sStop:
U1=B1[s]/(G1[s]-LL-U1)
s = s+1
Ul = G1[s]-LL-U1
suite U2 ; infinie, mais tronquee apres smax termes
s =1
U2 = B2[1]/(G2[1]-LL)
while s <= smax:
U2 = B2[s]/(G2[s]-LL-U2)
s = s+1
return(Ui-u2)

def SWFAngCoeff(m, n, sign, c, smax, TMNeps, dmn, tmn):
coefficients de fonction angulaire spherique, utilisant tmn (cf Little et
Corbato [Strab56]) avec iteration backward
csq = sign*c*c
valeur propre modifiee
tmn = SWFevalTMN(m,n,csq, smax, TMNeps);
construire un tableau de coefficients
nMm = n-m
rst = 0 if nMm % 2 == 0 else 1
rLarge = nMm+14;
dmn[rLarge] = 1.0;
for r in range(rrlarge, rSt+2, -2):
if csq == 0.0:
dmn[r] = 1.0 if r == nMm else 0.0
else:
dmn[r-2] = -bbtmn(m,n, r-nMm,csq, tmn)*dmn[r]/cc(m,r,csq) if
r==rLarge else
-(bbtmn(m,n, r-nMm, csq, tmn)*dmn[r]+aa(m,r,csq)*dmn[r+2])/cc(m,r,csq)
Normalisation selon le schema de Flammer (cf [Fla57])

tm = m+m

tmM1 = tm - 1.0

fm=m

fnPm = n +m

fnMm = nMm

trSt = 2*rst

frst = rst

term = exp(LogGamma(tm+1.0+trSt)-LogGamma(fm+frSt+1.0))/pow(2.0, frSt)

sum = term*dmn[rSt]
for r in range(rSt+2, rlLarge, 2):

fr =r

term *= -(fr+tmM1+frSt)/(fr-frst)

sum += term*dmn[r]
phase = 1.0 if (nMm-rSt) % 4 == 0@ else -1.0
Norm = phase*exp(LogGamma(fnPm+frSt+1.0)-LogGamma(0.5* (fnMm-frSt)+1.0)-

LogGamma(0.5* (fnPm+frSt)+1.0))/(pow(2.0, fnMm) *sum)

for r in range(rrst,rLarge+1,2):

dmn[r] *= Norm
return()

def aa(m, r, csq):

terme alpha pour la recurrence des coeff des fonctions d onde spheroidale
tmPrP1 = 2*m+r+1
tmPtrP3 = 2*(m+r)+3
return((tmPrP1+1.0)*tmPrP1*csq/(tmPtrP3*(tmPtrP3+2.0)))

def bbtmn(m, n, s, csq, tmn):
terme beta pour la recurrence des coeff de fonction d onde spheroidale ;
modifie pour 1la fonction auxiliaire tmn

fm m

tn 2*n

ts
fs
tnPts = tn+ts

2*s
S

return(fs*(tn+fs+1.0)*(1.0+csq*(2.0*(4.0*fm*fm-1.0)/((tn-1.0)*(tn+3.0)*(tnPts-1.
0)*(tnPts+3.0))))-csq*tmn)

def cc(m, r, csq):
terme gamma pour la recurrence des coeff de fonction d onde spheroidale
fr =r
tm = 2*m
tmPtr = tm+2.0*fr
return(fr*(fr-1.0)*csq/((tmPtr-3.0)*(tmPtr-1.0)))

def SWFevalTMN(m, n, csq, smax, TMNeps):
valeur propre de fonction d onde spheroidale sous forme tmn pour le degre n, 1
ordre m, 1 argument csq : utilise smax termes dans la fraction continue et
obtient 1la valeur propre modifiee avec precision TMNeps

if csq == 0.0:

return(0.0)

construire les tableaux de termes dans les fractions continues qui sont
independantes de la valeur propre

c2D2 = 0.5*csq

tcsq = 2.0*csq

c4 = csqg*csq

nMm = n-m

fm2M1 = 4.0*m*m-1.0

Elements pour la fonction U1l

riStart = @ if nMm % 2==0 else 1

r = rilStart

fr =r

tmPr = 2*m+r

mPr= m+r

tmPtrM1= 2.0*mPr-1.0
tn = n+n

tnM13 = (tn-1.0)*(tn+3.0)
s = fr - nMm
for t in range(riStart, (nMm+1)//2+1):

B1[t] =
(fr+2.0)*(fr+1.0)*(tmPr+2.0)*(tmPr+1.0)*c4/((tmPtrM1+4.0)* (tmPtrM1+4.0)* (tmPtrM1
+2.0)*(tmPtrM1+6.0))

tnPtsMl tn+2.0*s-1.0

GTT1[t] s*(tn+s+1.0)*(1.0+tcsq*fm2M1/ (tnM13*tnPtsM1* (tnPtsM1+4.0)))

fr += 2.

tmPr += 2.0

tmPtrM1 += 4.0

mPr += 2.0

s += 2.0

Elements pour la fonction U2 ; r commence en n-m+2smax pour smax termes
r2Start=nMm+2*smax

fr = r2Start;

tmPr = 2*m+r2Start

mPr = m+r2Start

tmPtrM1 = 2*mPr-1

S= 2*smax

for t in range(1, smax+1):

B2[t] = fr*(fr-1.0)*tmPr*(tmPr-1.0)*c4/(tmPtrM1*tmPtrM1* (tmPtrM1-
2.0)*(tmPtrM1+2.0))

tnPtsMl = tn+2.0*s-1.0

GTT2[t] = s*(tn+s+1.0)(1.0+tcsq*fm2M1/(tnM13*tnPtsM1* (tnPtsM1+4.0)))

fr -= 2.0

tmPr -= 2.0

tmPtrM1 -= 4.0

mPr -= 2.0

+ N I

s -= 2.0;
valeur propre modifiee estimee multipliee par le carre de c
CcTMNest = -0.01*csq
encadrement de la valeur propre modifiee
CTMNu = cTMNest*1.1
CTMNd = cTMNest*0.9
Uu = U(B1, GTT1, B2, GTT2, m, n, rilstart, r2Start, smax, CcTMNu)
ud = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNd)
k=1
while Uu*ud > 0.0:
cTstep = cTMNu - cTMNd
if abs (Uu) < abs (ud):
CTMNu += cTstep
Uu = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CTMNu)
else:
CTMND -= cTstep
ud = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CcTMNd)
if k> NTRY:
#print(f'\n SWFevalTMN bracket > {NTRY} tries : O returned')
return(0.0)
k = k+1
Raffiner la racine a une precision fractionnaire de TMNeps par la
methode de bisection ; commencer en cTMNu et TMNd
Uu = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CcTMNu)
Umid = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNd);
trouver la direction telle que U>0 pour CTMNrt+dcTMN
if Uu < 0.0:
dcTMN = cTMNd - CTMNu
CTMNrt = cTMNu
else:
dcTMN = cTMNu - cTMNd
CTMNrt = cTMNd
k =0
while (abs(dcTMN) >= TMNeps) and (Umid !'= 0.0):
dcTMN *= 0.5;
CTMNmid = CTMNrt+dcTMN
Umid = U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, cTMNmid)
if Umid <= 0.0:
CTMNrt = cTMNmid
k = k+1
if k > KMAX:
print(f'\n > {KMAX} tries to bisect root')
Umid = 0.0
return(xTMNrt/csq)

def U(B1, GTT1, B2, GTT2, m, n, riStart, r2Start, smax, CTMN):
fraction continue avec valeur propre de la fonction d onde spherique modifiee
TMN fois csq
suite U1l ; finie
if n == m:
Ul = GTT1[O]-CTMN
else:
if n == m+1:
Ul = GTT1[1]-CcTMN
else:
Ul = Bl[riStart]/(GTT1[riStart]-cTMN)
sStop = (n-m-1)/2
S = riStart+1
while s <= sStop:
Ul = B1[s]/(GTT1i[s]-CTMN-U1)
s = s+1
Ul = GTT1[s]-cTMN-U1
suite U2, infinie, mais tronquee apres smax termes
s = 1;

U2 = B2[1]/(GTT2[1]-CTMN)

while s <= smax:
U2 = B2[s]/(GTT2[s]-cTMN-U2)
S = s+1

return(Ui-u2)

def SIMN(m, n, eta, dmn, Seps):
fonction spheroidale angulaire du premier type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
nMm = n-m
rStart = @ if nMm % 2 == 0 else 1
= nMm + 14 # domaine des coefficients environ 10**15
sum = 0.0
ratio = 10
r = rStart
while ratio > Seps:
if r > rLarge:
print(f'\n\n S1NM unconverged to {Seps:.6E} in {rLarge} terms')
return(sum)
term = dmn[r]*PNM(m+r,m, eta)
sum += term
ratio = abs(term/sum)
r += 2
return(sum)

def S2MN(m, n, eta, dmn, Seps):
fonction spheroidale angulaire du second type ; degre n, ordre m, argument
eta. Convergence vers une precision fractionnaire Seps
nMm = n-m
rStart = 0 if nMm % 2 == 0 else 1
rLarge = nMm +14 # coefficient range about 10**15
sum = 0.0
ratio = 10
r = rStart
while ratio > Seps:
if r > rLarge:
print(f'\n\n S2NM unconverged to {Seps:.6} in {rLarge} terms')
return(sum)
term = dmn[r]*QNM(m+r,m,eta)
sum += term
ratio = abs(term/sum)

r += 2
return(sum)

MAX = 500
NTRY = 500
KMAX = 500
B1 = np.zeros(1000)
B2 = np.zeros(1000)
Gl = np.zeros(1000)
G2 = np.zeros(1000)

dmn = np.zeros(1000)
GTT1 = np.zeros(1000)
GTT2 = np.zeros(10600)
signe = +1 # prolate
signe = -1 # oblate
c=1
nbtermesfraccontinue = 4
epsilon = 0.0001
print(' signe (prolate 1 oblate -1) = ',signe, 'nb-termes-frac-continue =
', nbtermesfraccontinue,' epsilon = ',epsilon,' m =0',' c = ',c)
listevalpropres = []
for n in range(-120,120):
#print('n = ",n,' ¢ = ',c,end="")

res = SWFevalue(n,Q,signe,c,nbtermesfraccontinue, epsilon)
listevalpropres.append(res)
#print(' ---> ',res)

L2 = sorted(listevalpropres)

print('L2 = ',L2)

