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Alain Connes en 2004.

Il est difficile de présenter Alain Connes sans commencer par évoquer brièvement son impressionnant
curriculum vitae. Né en 1947, élève de l’École Normale Supérieure (1966-1970), après un passage au
CNRS, il est successivement professeur à Paris 6, directeur de recherche au CNRS, et depuis 1984
professeur au Collège de France, où il occupe la chaire d’Analyse et Géométrie. Parallèlement, il est
depuis 1979 professeur à l’Institut des Hautes Études Scientifiques à Bures-surYvette. Il partage sa
vie mathématique entre ces deux lieux : l’IHES lui offre le calme pour s’adonner à ses recherches
et la possibilité de rencontrer des mathématiciens et des physiciens théoriciens de tous pays et de
toutes spécialités ; le Collège de France lui donne l’occasion, chaque année, de présenter dans un
cours ses résultats les plus récents. Depuis 2003, il est aussi professeur à l’Université de Vanderbilt
aux États-Unis. Il a reçu les plus hautes distinctions internationales : la médaille Fields (1982) et
le prix Crafoord (2001), deux prix dont le prestige est comparable au prix Nobel, qui, on le sait,
n’existe pas pour les mathématiques. En France, où il est membre de l’Académie des Sciences depuis
1983, il vient de recevoir, en décembre 2004, la médaille d’or du CNRS.

La thèse : classification des facteurs de type III

Pour comprendre qui est Alain Connes, il faut discerner quelles furent les différentes étapes de
sa vie mathématique. Dans un premier temps, il s’est imposé comme un jeune mathématicien au
talent exceptionnel, en résolvant un problème reconnu difficile par les spécialistes, mais considéré
par beaucoup à l’époque comme marginal par rapport aux “grandes mathématiques”.

Il suivait alors le séminaire d’algèbres d’opérateurs de Jacques Dixmier à l’École Normale Supé-
rieure, où l’on parlait notamment d’algèbres de von Neumann. Ces algèbres sont des généralisations
non commutatives, ou si l’on préfère, quantiques, de la théorie de la mesure. Elles avaient été in-
troduites par von Neumann dès les années 20 ou 30 pour donner un fondement mathématique à la
mécanique quantique qui venait d’être découverte.

Référence : Images des mathématiques, compilation des articles de l’année 2006.
Consultable ici : https://images.math.cnrs.fr/wp-content/uploads/2006/05/volume-2006.pdf.
L’article de Pierre Julg concernant Alain Connes est à la page 68.
Transcription en LATEX : Denise Vella-Chemla, janvier 2026.
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Étant donné un espace de Hilbert H on considère l’algèbre L(H) des opérateurs bornés sur H. On
considère des algèbres d’opérateurs, c’est-à-dire des sous-algèbres A de L(H) telles que si un opé-
rateur T appartient à A, il en est de même de son adjoint T ∗. On impose de plus à la sous-algèbre
A une condition topologique : on dit que A est une algèbre de von Neumann si elle est stable par
convergence faible ou forte (c’est la convergence simple sur tout vecteur de H) ; on dit que A est
une C∗-algèbre si elle est stable pour la convergence normique (c’est la convergence uniforme sur
la boule unité de H).

Parmi les algèbres de Von Neumann, un rôle fondamental est joué par les facteurs, c’est-à-dire les
algèbres de von Neumann dont le centre est réduit aux scalaires. Murray et von Neumann, dans les
années 1930, avaient tenté une classification des facteurs, qu’ils répartirent en trois classes.

Les facteurs de classe I et II sont les plus proches du cas commutatif, avec une notion de trace et
de dimension : une trace est une forme linéaire positive τ qui vérifie la propriété τ(xy) = τ(yx).
Le type I est celui des algèbres de matrices Mn(C), ou en dimension infinie, de l’algèbre L(H)
des opérateurs bornés sur un espace de Hilbert. On a alors la trace usuelle des opérateurs, qui a
la propriété d’intégralité : elle prend des valeurs entières sur les projecteurs (éléments p tels que
p2 = p = p∗). Mais il y a aussi des facteurs admettant une trace qui prend des valeurs réelles
quelconques sur les projecteurs : c’est le type II.

Murray et von Neumann découvrirent aussi l’existence d’objets hautement non commutatifs, dit
facteurs de type III, qui n’admettent aucune trace. Jusqu’aux années 1970, ces facteurs étaient
restés mystérieux et résistaient à toute tentative de classification. Lorsque Alain Connes arrive au
séminaire Dixmier, on en est encore là, mais les travaux de Powers, Araki et Woods ont produit
de nouveaux exemples de facteurs de type III, et même une infinité de tels facteurs deux à deux
non isomorphes. Le génie d’Alain Connes a été d’appliquer à ces objets une théorie encore nouvelle
et peu exploitée, due au mathématicien japonais Minoru Tomita. Un facteur de type III n’ayant
pas de trace, on remplace la notion de trace par celle de poids. Un poids est une forme linéaire
positive φ, mais a priori φ(yx) ̸= φ(xy). La surprise, c’est que la non commutativité engendre
une dynamique, une évolution au cours du temps donnée par un groupe d’automorphismes à un
paramètre du facteur.

Plus précisément, on a pour tous les t ∈ R des automorphismes σt du facteur M , avec la loi de
groupe σt ◦ σs = σt+s, qui permettent de corriger la non commutativité via la formule dite KMSβ :

φ(yx) = φ(x σi β(y))

où σi β s’obtient par prolongement analytique, pour un certain β > 0.

Connes a montré que ce groupe à un paramètre est en fait indépendant du poids, modulo les au-
tomorphismes intérieurs, et donne lieu à des invariants spectraux qui permettent de classifier les
facteurs de type III. Connes a ainsi introduit dans sa thèse (1973) les facteurs dits IIIλ où λ est un
nombre réel entre 0 et 1. Cette solution, par un jeune thésard encore inconnu, d’un problème ouvert
depuis des décennies a profondément impressionné Jacques Dixmier et l’ensemble des spécialistes
des algèbres d’opérateurs. Cependant, la majorité des mathématiciens français ignoraient alors la
théorie de von Neumann, et le problème de la classification des facteurs n’était pas considéré comme
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un des principaux défis des mathématiques. Ce sont surtout les physiciens théoriciens qui ont re-
connu le génie d’Alain Connes. La mécanique statistique quantique, ainsi que certains modèles de
théorie des champs, utilisent en effet les algèbres de von Neumann de façon essentielle.

La statistique de Boltzmann associée à un hamiltonien H est donnée (sur une observable A) par le
poids

φ(A) = Trace
(
Ae−β H

)
/Trace

(
e−β H

)
et l’évolution dans le temps par les automorphismes

σt(A) = eitHAe−itH .

Le lecteur vérifiera sans peine la formule KMSβ ci-dessus. Le groupe à un paramètre associé à
un poids modélise l’évolution dans le temps d’un système statistique quantique associé à un état
de température donné (comme d’habitude, β = 1/kT où k est la constante de Boltzmann et T la
température absolue).

Aussi, lorsque Connes devient visiteur à l’IHES, c’est en tant que physicien théoricien.

Des facteurs aux feuilletages : vers la géométrie non commutative

Cette arrivée de Connes à l’IHES est un tournant de sa carrière scientifique. En effet, il entre
en contact avec des mathématiciens qui, s’ils ignorent tout de la théorie des facteurs de type III,
jonglent quotidiennement avec des faisceaux et des feuilletages, avec des groupes d’homologie et
des tenseurs de courbure. La géométrie différentielle et la géométrie algébrique sont considérées par
la communauté mathématique comme plus centrales, pour ne pas dire plus nobles, que la théorie
des algèbres d’opérateurs. Mais Connes ne se laisse pas impressionner. Il raconte, avec sa modestie
habituelle, et quelqu’exagération, qu’il ne comprenait rien aux conversations de ses collègues avec
qui il déjeunait à la cafétéria de l’Institut. Mais qu’on ne s’y trompe pas, Alain Connes a une faculté
étonnante d’assimiler de nouvelles notions. Et pour apprendre une théorie mathématique, au lieu
de se plonger dans les livres, il préfère discuter avec d’autres mathématiciens, se faire expliquer
puis retrouver par lui-même toute la théorie. Et il fait cela très vite. Aussi a-t-il très rapidement
compris la théorie des feuilletages, et vu le lien avec la théorie de von Neumann. Un feuilletage
est un objet géométrique qui est localement trivial comme un mille-feuille, mais qui globalement
a une structure dynamique non triviale. Connes définit alors l’algèbre de von Neumann associée à
un feuilletage, qui est en général un facteur, souvent de type III, le groupe à un paramètre de la
théorie de Tomita ayant une interprétation géométrique très simple. Il définit aussi la C∗-algèbre
associée à un feuilletage, et dans l’esprit d’Atiyah et Singer montre un théorème d’indice pour les
opérateurs elliptiques le long des feuilles d’un feuilletage transversalement mesuré. D’où l’idée de
géométrie non commutative. L’espace des feuilles d’un feuilletage est un ensemble non dénom-
brable sur lequel on serait bien en peine de définir, au sens classique, une théorie de la mesure, ou
une topologie, voire une structure différentiable.

Expliquons cela par un exemple, celui du feuilletage du tore bidimensionel par une droite de pente
irrationnelle. On se donne un carré dans le plan ; après recollage des côtés opposés, on obtient un
tore, qui est une variété compacte de dimension 2. On se donne une direction D dans le plan. Par-
tant d’un point x1 du bord inférieur I, on construit une suite de segments de droites dans le carré
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de la façon suivante : le premier segment est issu de x1 ; chaque segment est parallèle à D et a son
origine et son extrémité sur le bord du carré ; chaque fois qu’un point du bord est extrémité d’un
segment, l’origine du segment suivant est le point opposé du bord. On obtient ainsi une famille de
segments tracés à l’intérieur du carré, et après recollage des bords, on obtient une trajectoire sur le
tore, appellé feuille (du point de vue de la géométrie riemannienne, c’est une géodésique de la mé-
trique plate sur le tore). Le feuilletage est donné par la partition ainsi obtenue de la variété (ici le
tore) en feuilles. Voir les figures ci-contre où l’on a noté x2, x3 . . . les points obtenus sur le segment I.

Il faut distinguer deux cas. Supposons que la pente de D soit rationnelle. Le processus est périodique
(sur la figure, la pente est égale à 2). Il n’y a qu’un nombre fini de segments, la trajectoire sur le
tore est périodique. L’espace des trajectoires est bien décrit par l’algèbre commutative des fonctions
continues sur un intervalle (ici la moitié de l’intervalle I). C’est un espace usuel, dit commutatif.

Prenons au contraire pour la pente de D un nombre θ irrationnel. On a tracé les quatre premiers
points situés sur I de la trajectoire de x1 et les deux premiers points de celle de y1. Chaque trajec-
toire est infinie (on ne revient jamais au point de départ) et dense. Si on veut décrire l’espace des
trajectoires par des fonctions continues sur I, celles-ci doivent avoir la même valeur sur les points
d’une même trajectoire, donc être constantes. L’algèbre de ces fonctions est l’algèbre des nombres
complexes. Elle ne donne aucun renseignement sur l’espace Tθ des feuilles. Alain Connes propose
de décrire Tθ par un algèbre non commutative. En ce sens, l’espace des feuilles est un espace
non commutatif.

Un autre exemple d’espace non commutatif est l’espace des orbites de l’action d’un groupe discret
sur une variété compacte. Le cas le plus simple, intimement lié au feuilletage ci-dessus, est celui où
la variété est le cercle muni de l’action du groupe Z engendrée par une rotation d’angle 2πθ. Là
encore, les orbites sont denses si θ est irrationnel et l’espace des orbites doit être décrit par une
algèbre non commutative.

Pour définir l’algèbre du feuilletage du tore ci-dessus, on considère des noyaux k(x, y) définis sur
les couples de points x et y situés sur une même feuille, continus et à support compact sur chaque
feuille. On multiplie ces noyaux par le produit usuel de convolution des noyaux :

k1 ∗ k2(x, y) =
∫

k1(x, z) k2(z, y) dz

où l’intégrale est prise sur la feuille, pour la mesure de Lebesgue. De tels noyaux peuvent être in-
terprétés comme des familles d’opérateurs indexés par les feuilles. En complétant l’algèbre ainsi
obtenue, on définit alors d’une part l’algèbre de von Neumann du feuilletage, et d’autre part
la C∗-algèbre du même feuilletage. De même, dans le cas de l’action de Z, on considère des matrices
à support fini ai,j indexées par des couples (i, j) d’éléments d’une même orbite, et qu’on multiplie par
le produit usuel des matrices, et on définit ainsi l’algèbre de von Neumann et la C∗-algèbre associées.
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’Figure 2 : Pente irrationnelle.

’Figure 3 : Pente rationnelle.

Notons que dans les deux exemples ci-dessus les facteurs obtenus sont de type II. Cela est dû au
fait que l’action de la rotation sur le cercle préserve la mesure de Lebesgue (ou pour le feuilletage, le
flot des trajectoires préserve une mesure transverse), d’où une trace sur l’algèbre. Mais on construit
facilement des exemples sans mesure invariante, et on obtient alors le type III.
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’Figure 4 : Feuilletage du tore.

Ces géométries “non commutatives” sont donc décrites au moyen d’algèbres non commutatives qui
jouent le rôle d’espaces de fonctions. Ainsi un espace mesuré X est décrit par l’algèbre L∞(X) des
fonctions mesurables bornées, qui est une algèbre de von Neumann commutative. Pour l’espace
des feuilles d’un feuilletage, c’est l’algèbre de von Neumann (non commutative) associée qui joue
le rôle d’algèbre de fonctions mesurables bornées sur l’espace des feuilles. De même pour la topo-
logie : un espace topologique compact X est décrit par l’algèbre des fonctions continues sur X.
Pour un feuilletage, la C∗-algèbre (non commutative) associée est considérée comme l’algèbre des
fonctions continues sur l’espace “non commutatif” des feuilles. Ce qui est fait pour un feuilletage
peut aussi se faire pour l’action d’un groupe discret sur un espace compact. L’espace des orbites
est lui aussi un espace “non commutatif” décrit par une C∗-algèbre (du point de vue topologique)
ou une algèbre de von Neumann. D’autres espaces non commutatifs sont des espaces d’orbites de
relations d’équivalences, ou bien sont définis par des groupoïdes. Un autre cas intéressant est celui
des groupes : le dual d’un groupe, c’est-à-dire l’espace des classes d’équivalences de représentations
unitaires irréductibles, est aussi un espace non commutatif : dans le cas des groupes de Lie ou des
groupes p-adiques, cet espace désingularise le dual décrit par la théorie des représentations, mais
dans le cas des groupes discrets, on obtient un espace non commutatif hautement non trivial et
encore mal connu.

K-théorie et homologie cyclique

Un invariant de topologie algébrique qui se généralise sans difficulté au cas non commutatif est la
K-théorie. C’est un groupe abélien K(X) attaché à un espace topologique X (disons, compact)
et qui classifie (à isomorphisme stable près) les fibrés vectoriels sur X.

Deux fibrés E1 et E2 sur X sont stablement isomorphes s’il existe un fibré F tel que les fibrés
sommes directes E1 ⊕ F et E2 ⊕ F soient isomorphes. Sur l’ensemble des classes d’isomorphismes
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stables de fibrés, on définit l’addition par la somme directe des fibrés, et K(X) n’est autre que le
groupe (dit de Grothendieck) des différences formelles de classes de fibrés, exactement comme dans
la construction de l’anneau Z des entiers relatifs à partir des entiers naturels.

On sait depuis Atiyah et Singer que cet invariant joue un rôle crucial dans la théorie de l’indice. Par
un théorème dû à Serre, les fibrés sur X correspondent à certains modules sur l’algèbre C(X). On
peut alors définir la K-théorie d’une C∗-algèbre et donc d’un espace topologique non commutatif.
Dans le début des années 1980, Connes s’est intéressé à cet invariant, et a compris, avec Georges
Skandalis, l’intérêt de la K-théorie bivariante développée à ce moment-là par le mathématicien
russe Gennadi Kasparov. Ils ont montré, dans l’esprit de Grothendieck et en réinterprétant une
des preuves d’Atiyah et Singer, comment le théorème de l’indice pour les opérateurs elliptiques sur
des variétés compactes se ramenait à une propriété de fonctorialité en théorie de Kasparov. De là,
la généralisation aux feuilletages était naturelle. Il devenait donc naturel de calculer la K-théorie
d’espaces non commutatifs comme les feuilletages, les groupes ou les actions de groupes. Dès 1980
lors d’un congrès à Kingston (Ontario), Alain Connes a eu l’intuition d’une interprétation géomé-
trique de la K-théorie de la C∗-algèbre d’un feuilletage ou d’un groupe. De ses discussions avec
le topologue Paul Baum, qu’il rencontre alors, jaillira l’idée d’une conjecture, désormais célèbre
sous le nom de conjecture de Baum-Connes : le groupe de K-théorie analytique (c’est-à-dire la
K-théorie de la C∗-algèbre du groupe ou du feuilletage) est isomorphe, via une flèche d’indice, à un
groupe de K-théorie dit géométrique, construit à partir du classifiant des actions propres du groupe
(ou du groupoïde d’holonomie du feuilletage). Cette conjecture est liée à la théorie des représenta-
tions des groupes de Lie (séries discrètes), à la topologie (conjecture de Novikov sur l’invariance par
homotopie des hautes signatures), à la géométrie riemannienne (conjecture de Gromov-Lawson sur
les obstructions à l’existence de métriques riemanniennes à courbure scalaire positive), à l’algèbre
(conjecture des idempotents).

Précisée par la suite avec N. Higson, la conjecture de Baum-Connes sera le point de départ des
travaux de nombreux mathématiciens pendant au moins 20 ans. Parmi les résultats les plus specta-
culaires, citons :

- le travail de N. Higson et G. Kasparov en 1996 qui établit la conjecture pour les groupes ayant
la propriété dite de Haagerup ou T -moyennabilité (Gromov) ; c’est une classe de groupes re-
lativement vaste, elle contient les groupes moyennables, mais exclut par exemple les groupes
discrets possédant une propriété de rigidité dite propriété T de Kazhdan.

- la thèse de Vincent Lafforgue en 1998, qui pour la première fois prouve la conjecture de
Baum-Connes pour certains groupes discrets ayant la propriété T . Elle a également permis
de démontrer la conjecture pour tous les groupes localement compacts connexes.

Malgré le nombre de résultats établissant la conjecture pour des groupes particuliers, un cas aussi
simple que celui de SL(3,Z), le groupe des matrices 3 sur 3 à coefficients entiers et de déterminant
égal à 1 (ce groupe a la propriété T ), est ouvert, sans qu’on ait aucune idée d’approche. Inverse-
ment, on peut tenter de construire des groupes suffisamment sauvages pour être des contre-exemples
à la conjecture. L’idée puissante de Mikhaïl Gromov de construire des groupes aléatoires en sorte
qu’ils aient des propriétés très éloignées des groupes pour lesquels la conjecture est actuellement
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prouvée, est prometteuse. Mais pour l’instant , elle n’a réussi à fournir que des contre-exemples à
une conjecture, dite conjecture de Baum-Connes à coefficients, qui est plus forte que la conjecture
de Baum-Connes classique.

Mais la K-théorie n’est pas le seul invariant intéressant en topologie algébrique. Une question
naturelle est de définir l’homologie, ou la cohomologie d’un espace topologique non commutatif.
Pour cela, il faut faire un détour par la géométrie différentielle. On sait que dans le cas classique,
l’homologie (ou la cohomologie) peut être définie comme (co)homologie singulière (au moyen de
triangulations par des simplexes ou des cycles singuliers) ou bien de façon équivalente comme coho-
mologie de Čech, décrite au moyen de cocycles associés à un recouvrement par une famille d’ouverts.
Il s’agit là de définitions topologiques de la (co)homologie à coefficients entiers, naturellement inva-
riante par homéomorphisme, mais difficilement généralisable dans le cas non commutatif. Si l’espace
topologique est de plus muni d’une structure de variété différentiable, alors il y a une autre dé-
finition de la cohomologie (à coefficients réels ou complexes), celle de de Rham, obtenue à partir
du complexe des formes différentielles. C’est cette dernière définition qui est retenue par Connes
pour le cas non commutatif. Mais le prix à payer, c’est qu’il faut choisir une certaine sous-algèbre
dense de la C∗-algèbre, jouant le rôle de l’algèbre des fonctions lisses (de classe C∞, par exemple).
Le point de départ est dans des calculs de géométrie non commutative : le calcul de caractères de
Chern de modules de Fredholm fait apparaître une généralisation de la notion de trace. Ainsi un
2-cocycle cyclique est une forme trilinéaire sur une algèbre vérifiant les formules :

τ(a0, a1, a2) = τ(a1, a2, a0)

τ(a0a1, a2, a3)− τ(a0, a1a2, a=3) + τ(a0, a1, a2a3)− τ(a3a0, a1, a2) = 0.

À partir de la notion de n-cocycles, Alain Connes définit en 1981 la cohomologie cyclique d’une
algèbre. Il développe cette théorie purement algébrique, découvre la longue suite exacte qui permet
de la calculer. L’homologie cyclique a depuis été abondamment utilisée par les algébristes, indé-
pendamment des motivations d’Alain Connes qui, lui, revient toujours à son idée : la géométrie
non commutative. L’un des problèmes les plus difficiles est de bien choisir la sous-algèbre dense de
la C∗-algèbre : il faut qu’elle soit suffisamment petite pour qu’on puisse calculer sa cohomologie
cyclique, mais suffisamment grosse pour avoir la même K-théorie que la C∗-algèbre. Une bonne
partie des articles d’Alain Connes dans les années 1980 tournent autour de cette problématique,
appliquée au cas des feuilletages ou au cas essentiellement équivalent des actions de groupes discrets
sur des variétés. Il définit dans ce cadre la classe fondamentale transverse, analogue de la classe
fondamentale d’une variété (qui appartient à l’homologie de la variété). En particulier, il donne
une interprétation de la classe de Godbillon-Vey d’un feuilletage de codimension 1 en terme de
cohomologie cyclique et donc d’accouplement avec la K-théorie.

Un feuilletage de codimension 1 est donné par une équation ϑ = 0, où ϑ est une 1-forme satisfaisant
la condition d’intégrabilité dϑ ∧ ϑ = 0. On a donc dϑ = α ∧ ϑ où α est une 1-forme. On considère
alors la 3-forme α∧ dα, et un calcul simple montre que sa classe de cohomologie ne dépend que du
feuilletage. C’est l’invariant de Godbillon-Vey du feuilletage.

Alain Connes tire de son interprétation de cette classe un corollaire frappant : si la classe de
Godbillon-Vey est non nulle, alors le flot des poids de l’algèbre de von Neumann préserve une
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mesure de masse finie (et elle est de type III). Ce superbe théorème de Connes peut aussi se
démontrer de manière élémentaire sans aucune homologie cyclique, mais il montre toute la force
et la beauté du point de vue géométrie non commutative. On voit là une des caractéristiques de
la pensée d’Alain Connes, qui est sa profonde unité. En développant la K-théorie et l’homologie
cyclique des feuilletages, il n’oublie pas son point de départ, la classification des facteurs de type III.

Un autre succès important de cette méthode de géométrie différentielle non commutative est d’avoir
donné la première preuve de la conjecture de Novikov pour les groupes hyperboliques au sens de
Gromov. Dans ce cas l’algèbre des “fonctions lisses” sur le dual du groupe (vu comme espace non
commutatif) est l’algèbre des fonctions à décroissance rapide définie par Paul Jolissaint.

Triplets spectraux et indice transversal

Jusque-là, les théorèmes d’indices rencontrés dans le cadre des feuilletages sont des théorèmes d’in-
dice longitudinaux : on considère des opérateurs elliptiques le long des feuilles du feuilletage, et
l’indice d’un tel opérateur est un élément de la K-théorie de la C∗-algèbre du feuilletage, c’est-à-dire
la K-théorie de l’espace non commutatif des feuilles. Pour obtenir un indice qui soit un nombre, on
l’évalue sur une classe d’homologie de cet espace, c’est-à-dire de la cohomologie cyclique de l’algèbre
du feuilletage. Mais il y a un problème plus difficile auquel Alain Connes va s’attaquer dans les
années 1990, en collaboration avec Henri Moscovici. C’est la question du théorème de l’indice
transverse : cette fois, on veut vraiment considérer un opérateur elliptique sur l’espace non com-
mutatif des feuilles, c’est donc un opérateur transversalement elliptique, dont Connes et Moscovici
montrent qu’il définit un élément de la K-homologie du feuilletage (la K-homologie est la théorie
duale de la K-théorie), donc une application de la K-théorie vers Z, l’anneau des entiers. Le but
du théorème de l’indice transversal est de donner cette application de la K-théorie vers Z de façon
concrète, c’est-à-dire au moyen d’un cocycle cyclique, pour lequel une formule explicite est donnée.
Il y a d’abord une première difficulté : fabriquer de tels opérateurs transversalement elliptiques,
sans aucune hypothèse sur le feuilletage : ainsi on ne veut pas se restreindre au cas où le feuille-
tage aurait une métrique riemannienne transversale invariante par holonomie. Pour cela, Connes et
Moscovici procèdent en deux étapes ; d’abord, on grossit l’espace pour prendre celui de toutes les
métriques transversales, ensuite on admet, au lieu d’opérateurs elliptiques, des opérateurs hypoel-
liptiques. Moyennant quoi, on obtient un triplet spectral sur l’espace non-commutatif des feuilles.

Étant donné un espace non commutatif dont la topologie est décrite par une C∗-algèbre A, on se
donne un espace de Hilbert H dans lequel est représentée A, et un opérateur (non borné) autoadjoint
D à résolvante compacte (l’opérateur 1 + D2 est d’inverse compact) et tel que les commutateurs
[D, a] soient bornés pour a dans une certaine sous-algèbre dense de A. Dans le cas de l’opérateur de
Dirac sur une variété riemannienne, ce commutateur redonne la métrique, c’est-à-dire l’élément de
longueur infinitésimal ds2. La notion de triplet spectral permet de définir l’analogue non commutatif
de la notion de variété riemannienne.

Il reste alors à calculer le caractère de Chern de ce triplet spectral, ce qu’Alain Connes et Henri
Moscovici font en utilisant la notion de trace de Dixmier et de résidu de Wodzicki. La formule obte-
nue est à la fois très simple par son élégance, et très compliquée par le nombre de termes impliqués
dès qu’on veut l’expliciter. Ainsi, même dans le cas d’un feuilletage de codimension 1, il faut une
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bonne centaine de pages pour mener le calcul... Dans le cas général, cela est quasiment impossible,
sauf si l’on peut comprendre un principe permettant d’organiser et de simplifier ces calculs. Comme
c’est en général le cas en mathématiques, un tel principe simplificateur est fourni par la notion de
symétrie. Classiquement, la symétrie est décrite par un groupe ; ici, dans une situation non com-
mutative, c’est une algèbre de Hopf ou groupe quantique : il s’agit d’un objet qui se comporte
comme un groupe, sauf que l’ensemble des éléments du groupe n’est pas vraiment un ensemble ou
un espace, mais un espace non-commutatif. L’idée est que ce groupe quantique agit sur l’espace
non commutatif, d’où l’on déduit une application caractéristique qui permet de pousser la coho-
mologie cyclique du groupe quantique (qui se calcule, c’est la cohomologie de Gel’fand-Fuks) dans
la cohomologie cyclique de notre espace non commutatif. Il se fait alors que le caractère du triplet
spectral est dans l’image de cette application caractéristique, et alors, tout se calcule explicitement
grâce à la cohomologie de Gel’fand-Fuks, au moyen de polynômes universels analogues à ceux qui
apparaissent dans les théorèmes de l’indice classiques.

Retour à la physique

C’est là qu’a lieu, de façon inattendue, un retour à la physique, via les algèbres de Hopf. Les calculs
des physiciens en théorie quantique des champs reposent sur des méthodes de développement per-
turbatifs où les termes sont des intégrales divergentes, qui nécessitent une renormalisation. Ces
techniques de renormalisation font apparaître la combinatoire des diagrammes de Feynman. Des
formules empiriques dites de Bogoliubov-Parasiuk ramènent le calculs de diagrammes compliqués à
des diagrammes plus simples. Or en 1998, le physicien Dirk Kreimer découvre que ces formules qui
n’étaient a priori que de simples recettes, traduisent l’existence d’un objet mathématique, qui n’est
autre qu’une algèbre de Hopf ou groupe quantique. C’est là que Connes rencontre Kreimer, et ils
découvrent ensemble que l’algèbre de Hopf de Kreimer et celle de Connes-Moscovici sont essentiel-
lement les mêmes. Autrement dit, ce sont les mêmes règles de symétries quantiques qui régissent
d’une part les calculs de théorie quantique des champs (permettant de calculer, par des méthodes
perturbatives, des quantités physiquement observables), et d’autre part les calculs de géométrie
non commutative (donnant explicitement l’indice d’opérateurs transversalement elliptiques sur des
feuilletages).

Un pas de plus a ensuite été franchi par Connes et Kreimer pour comprendre l’origine mathé-
matique de cette algèbre de Hopf et son rôle dans le processus de renormalisation : ce processus
n’est autre que la décomposition de Birkhoff, et ceci établit un lien direct et très simple avec le
problème de Riemann-Hilbert. Ainsi, ce qui était au départ une recette empirique justifiée par
l’expérience physique, est maintenant relié à un des grands problèmes des mathématiques, et non
des moindres, puisque le problème de Riemann-Hilbert est le 21ieme de la liste des 23 problèmes
proposés par David Hilbert au Congrès international de Paris en 1900.

Enfin, dans sa collaboration récente avec Matilde Marcolli, Alain Connes a trouvé la signification
mathématique de cette correspondance de Riemann-Hilbert : cette dernière est reliée à la théorie
de Galois motivique, introduite par Grothendieck. Elle fait apparaître un groupe de symétrie
dont Pierre Cartier avait conjecturé l’existence sous le nom de “groupe de Galois cosmique” et qui
est donc de nature arithmétique. Ainsi la géométrie non commutative relie la physique à la théorie
des nombres. On entrevoit ainsi le lien entre ces deux univers mystérieux, celui des particules élé-
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mentaires et celui des nombres premiers, qui ont toujours fasciné Alain Connes.
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